Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr9qV..
/
b28eb..
PUMGc..
/
fc91e..
vout
Pr9qV..
/
86a3e..
0.10 bars
TMNUu..
/
a83f6..
ownership of
c8ac6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMX2R..
/
8153c..
ownership of
1fb08..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcJZ..
/
7f563..
ownership of
48315..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPZb..
/
bf4a1..
ownership of
524b8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ3d..
/
d1cbe..
ownership of
f94c3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMN4M..
/
06238..
ownership of
b0e20..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLim..
/
adca5..
ownership of
614d8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMK5Z..
/
c71e1..
ownership of
070c1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLT9..
/
50f7f..
ownership of
d8d39..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTiV..
/
bee0d..
ownership of
acc82..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcu5..
/
de458..
ownership of
aaf33..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLty..
/
89c77..
ownership of
f88df..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKBz..
/
04a7b..
ownership of
5f9b6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTNT..
/
253f6..
ownership of
b1054..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMc3n..
/
edba3..
ownership of
4fa66..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNmz..
/
f6cdc..
ownership of
52df4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRLd..
/
db417..
ownership of
76dc0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMa4N..
/
611b5..
ownership of
b7006..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUio..
/
a80e6..
ownership of
d4102..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaLF..
/
432e7..
ownership of
e737d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbLX..
/
9976a..
ownership of
424b5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLsa..
/
d0c23..
ownership of
a5e77..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHyC..
/
faf73..
ownership of
6fb84..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMR35..
/
42b44..
ownership of
42069..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbyV..
/
2349c..
ownership of
7156d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHyn..
/
eae91..
ownership of
b64af..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH34..
/
60c4c..
ownership of
4ed55..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZbE..
/
aba36..
ownership of
46841..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMafG..
/
a906d..
ownership of
eccab..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMfj..
/
5b534..
ownership of
6b31f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEft..
/
df7de..
ownership of
93541..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRao..
/
2c3e2..
ownership of
5b1dd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXNd..
/
d3ab3..
ownership of
081d0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRwH..
/
46c57..
ownership of
b8ffb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbsu..
/
fcc34..
ownership of
bea59..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLjr..
/
e0b23..
ownership of
a8fe7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUQyb..
/
76da5..
doc published by
PrCmT..
Known
df_op__df_ot__df_uni__df_int__df_iun__df_iin__df_disj__df_br__df_opab__df_opab_b__df_mpt__df_tr__ax_rep__ax_pow__df_id__df_eprel__df_po__df_so
:
∀ x0 : ο .
(
(
∀ x1 x2 :
ι → ο
.
wceq
(
cop
x1
x2
)
(
cab
(
λ x3 .
w3a
(
wcel
x1
cvv
)
(
wcel
x2
cvv
)
(
wcel
(
cv
x3
)
(
cpr
(
csn
x1
)
(
cpr
x1
x2
)
)
)
)
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wceq
(
cotp
x1
x2
x3
)
(
cop
(
cop
x1
x2
)
x3
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cuni
x1
)
(
cab
(
λ x2 .
wex
(
λ x3 .
wa
(
wcel
(
cv
x2
)
(
cv
x3
)
)
(
wcel
(
cv
x3
)
x1
)
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cint
x1
)
(
cab
(
λ x2 .
∀ x3 .
wcel
(
cv
x3
)
x1
⟶
wcel
(
cv
x2
)
(
cv
x3
)
)
)
)
⟶
(
∀ x1 x2 :
ι →
ι → ο
.
wceq
(
ciun
x1
x2
)
(
cab
(
λ x3 .
wrex
(
λ x4 .
wcel
(
cv
x3
)
(
x2
x4
)
)
x1
)
)
)
⟶
(
∀ x1 x2 :
ι →
ι → ο
.
wceq
(
ciin
x1
x2
)
(
cab
(
λ x3 .
wral
(
λ x4 .
wcel
(
cv
x3
)
(
x2
x4
)
)
x1
)
)
)
⟶
(
∀ x1 x2 :
ι →
ι → ο
.
wb
(
wdisj
x1
x2
)
(
∀ x3 .
wrmo
(
λ x4 .
wcel
(
cv
x3
)
(
x2
x4
)
)
x1
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wb
(
wbr
x1
x2
x3
)
(
wcel
(
cop
x1
x2
)
x3
)
)
⟶
(
∀ x1 :
ι →
ι → ο
.
wceq
(
copab
x1
)
(
cab
(
λ x2 .
wex
(
λ x3 .
wex
(
λ x4 .
wa
(
wceq
(
cv
x2
)
(
cop
(
cv
x3
)
(
cv
x4
)
)
)
(
x1
x3
x4
)
)
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
copab_b
x1
)
(
cab
(
λ x2 .
wex
(
λ x3 .
wex
(
λ x4 .
wa
(
wceq
(
cv
x2
)
(
cop
(
cv
x4
)
(
cv
x4
)
)
)
(
x1
x4
)
)
)
)
)
)
⟶
(
∀ x1 x2 :
ι →
ι → ο
.
wceq
(
cmpt
x1
x2
)
(
copab
(
λ x3 x4 .
wa
(
wcel
(
cv
x3
)
(
x1
x3
)
)
(
wceq
(
cv
x4
)
(
x2
x3
)
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wb
(
wtr
x1
)
(
wss
(
cuni
x1
)
x1
)
)
⟶
(
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 .
(
∀ x3 .
wex
(
λ x4 .
∀ x5 .
(
∀ x6 .
x1
x6
x5
x3
)
⟶
wceq
(
cv
x5
)
(
cv
x4
)
)
)
⟶
wex
(
λ x3 .
∀ x4 .
wb
(
wcel
(
cv
x4
)
(
cv
x3
)
)
(
wex
(
λ x5 .
wa
(
wcel
(
cv
x5
)
(
cv
x2
)
)
(
∀ x6 .
x1
x6
x4
x5
)
)
)
)
)
⟶
(
∀ x1 .
wex
(
λ x2 .
∀ x3 .
(
∀ x4 .
wcel
(
cv
x4
)
(
cv
x3
)
⟶
wcel
(
cv
x4
)
(
cv
x1
)
)
⟶
wcel
(
cv
x3
)
(
cv
x2
)
)
)
⟶
wceq
cid
(
copab
(
λ x1 x2 .
wceq
(
cv
x1
)
(
cv
x2
)
)
)
⟶
wceq
cep
(
copab
(
λ x1 x2 .
wcel
(
cv
x1
)
(
cv
x2
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
wpo
x1
x2
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wa
(
wn
(
wbr
(
cv
x3
)
(
cv
x3
)
x2
)
)
(
wa
(
wbr
(
cv
x3
)
(
cv
x4
)
x2
)
(
wbr
(
cv
x4
)
(
cv
x5
)
x2
)
⟶
wbr
(
cv
x3
)
(
cv
x5
)
x2
)
)
(
λ x5 .
x1
)
)
(
λ x4 .
x1
)
)
(
λ x3 .
x1
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
wor
x1
x2
)
(
wa
(
wpo
x1
x2
)
(
wral
(
λ x3 .
wral
(
λ x4 .
w3o
(
wbr
(
cv
x3
)
(
cv
x4
)
x2
)
(
wceq
(
cv
x3
)
(
cv
x4
)
)
(
wbr
(
cv
x4
)
(
cv
x3
)
x2
)
)
(
λ x4 .
x1
)
)
(
λ x3 .
x1
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_op
:
∀ x0 x1 :
ι → ο
.
wceq
(
cop
x0
x1
)
(
cab
(
λ x2 .
w3a
(
wcel
x0
cvv
)
(
wcel
x1
cvv
)
(
wcel
(
cv
x2
)
(
cpr
(
csn
x0
)
(
cpr
x0
x1
)
)
)
)
)
(proof)
Theorem
df_ot
:
∀ x0 x1 x2 :
ι → ο
.
wceq
(
cotp
x0
x1
x2
)
(
cop
(
cop
x0
x1
)
x2
)
(proof)
Theorem
df_uni
:
∀ x0 :
ι → ο
.
wceq
(
cuni
x0
)
(
cab
(
λ x1 .
wex
(
λ x2 .
wa
(
wcel
(
cv
x1
)
(
cv
x2
)
)
(
wcel
(
cv
x2
)
x0
)
)
)
)
(proof)
Theorem
df_int
:
∀ x0 :
ι → ο
.
wceq
(
cint
x0
)
(
cab
(
λ x1 .
∀ x2 .
wcel
(
cv
x2
)
x0
⟶
wcel
(
cv
x1
)
(
cv
x2
)
)
)
(proof)
Theorem
df_iun
:
∀ x0 x1 :
ι →
ι → ο
.
wceq
(
ciun
x0
x1
)
(
cab
(
λ x2 .
wrex
(
λ x3 .
wcel
(
cv
x2
)
(
x1
x3
)
)
x0
)
)
(proof)
Theorem
df_iin
:
∀ x0 x1 :
ι →
ι → ο
.
wceq
(
ciin
x0
x1
)
(
cab
(
λ x2 .
wral
(
λ x3 .
wcel
(
cv
x2
)
(
x1
x3
)
)
x0
)
)
(proof)
Theorem
df_disj
:
∀ x0 x1 :
ι →
ι → ο
.
wb
(
wdisj
x0
x1
)
(
∀ x2 .
wrmo
(
λ x3 .
wcel
(
cv
x2
)
(
x1
x3
)
)
x0
)
(proof)
Theorem
df_br
:
∀ x0 x1 x2 :
ι → ο
.
wb
(
wbr
x0
x1
x2
)
(
wcel
(
cop
x0
x1
)
x2
)
(proof)
Theorem
df_opab
:
∀ x0 :
ι →
ι → ο
.
wceq
(
copab
x0
)
(
cab
(
λ x1 .
wex
(
λ x2 .
wex
(
λ x3 .
wa
(
wceq
(
cv
x1
)
(
cop
(
cv
x2
)
(
cv
x3
)
)
)
(
x0
x2
x3
)
)
)
)
)
(proof)
Theorem
df_opab_b
:
∀ x0 :
ι → ο
.
wceq
(
copab_b
x0
)
(
cab
(
λ x1 .
wex
(
λ x2 .
wex
(
λ x3 .
wa
(
wceq
(
cv
x1
)
(
cop
(
cv
x3
)
(
cv
x3
)
)
)
(
x0
x3
)
)
)
)
)
(proof)
Theorem
df_mpt
:
∀ x0 x1 :
ι →
ι → ο
.
wceq
(
cmpt
x0
x1
)
(
copab
(
λ x2 x3 .
wa
(
wcel
(
cv
x2
)
(
x0
x2
)
)
(
wceq
(
cv
x3
)
(
x1
x2
)
)
)
)
(proof)
Theorem
df_tr
:
∀ x0 :
ι → ο
.
wb
(
wtr
x0
)
(
wss
(
cuni
x0
)
x0
)
(proof)
Theorem
ax_rep
:
∀ x0 :
ι →
ι →
ι → ο
.
∀ x1 .
(
∀ x2 .
wex
(
λ x3 .
∀ x4 .
(
∀ x5 .
x0
x5
x4
x2
)
⟶
wceq
(
cv
x4
)
(
cv
x3
)
)
)
⟶
wex
(
λ x2 .
∀ x3 .
wb
(
wcel
(
cv
x3
)
(
cv
x2
)
)
(
wex
(
λ x4 .
wa
(
wcel
(
cv
x4
)
(
cv
x1
)
)
(
∀ x5 .
x0
x5
x3
x4
)
)
)
)
(proof)
Theorem
ax_pow
:
∀ x0 .
wex
(
λ x1 .
∀ x2 .
(
∀ x3 .
wcel
(
cv
x3
)
(
cv
x2
)
⟶
wcel
(
cv
x3
)
(
cv
x0
)
)
⟶
wcel
(
cv
x2
)
(
cv
x1
)
)
(proof)
Theorem
df_id
:
wceq
cid
(
copab
(
λ x0 x1 .
wceq
(
cv
x0
)
(
cv
x1
)
)
)
(proof)
Theorem
df_eprel
:
wceq
cep
(
copab
(
λ x0 x1 .
wcel
(
cv
x0
)
(
cv
x1
)
)
)
(proof)
Theorem
df_po
:
∀ x0 x1 :
ι → ο
.
wb
(
wpo
x0
x1
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wa
(
wn
(
wbr
(
cv
x2
)
(
cv
x2
)
x1
)
)
(
wa
(
wbr
(
cv
x2
)
(
cv
x3
)
x1
)
(
wbr
(
cv
x3
)
(
cv
x4
)
x1
)
⟶
wbr
(
cv
x2
)
(
cv
x4
)
x1
)
)
(
λ x4 .
x0
)
)
(
λ x3 .
x0
)
)
(
λ x2 .
x0
)
)
(proof)
Theorem
df_so
:
∀ x0 x1 :
ι → ο
.
wb
(
wor
x0
x1
)
(
wa
(
wpo
x0
x1
)
(
wral
(
λ x2 .
wral
(
λ x3 .
w3o
(
wbr
(
cv
x2
)
(
cv
x3
)
x1
)
(
wceq
(
cv
x2
)
(
cv
x3
)
)
(
wbr
(
cv
x3
)
(
cv
x2
)
x1
)
)
(
λ x3 .
x0
)
)
(
λ x2 .
x0
)
)
)
(proof)