Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr8Ky../0989b..
PUSDz../dda7b..
vout
Pr8Ky../c69be.. 0.00 bars
TMG43../b7c66.. negprop ownership controlledby Pr4zB.. upto 0
TMYLS../9f564.. negprop ownership controlledby Pr4zB.. upto 0
TMK6i../8d3d3.. ownership of 5b30a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNUw../888d7.. ownership of 73633.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMV3L../6424c.. ownership of 485cd.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWsG../899f7.. ownership of 1accb.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUUKF../481ed.. doc published by Pr4zB..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Param TwoRamseyPropTwoRamseyProp : ιιιο
Param ordsuccordsucc : ιι
Known not_TwoRamseyProp_4_4_17not_TwoRamseyProp_4_4_17 : not (TwoRamseyProp 4 4 17)
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Definition u6 := ordsucc u5
Definition u7 := ordsucc u6
Definition u8 := ordsucc u7
Definition u9 := ordsucc u8
Definition u10 := ordsucc u9
Definition u11 := ordsucc u10
Definition u12 := ordsucc u11
Definition u13 := ordsucc u12
Definition u14 := ordsucc u13
Definition u15 := ordsucc u14
Definition u16 := ordsucc u15
Definition u17 := ordsucc u16
Param atleastpatleastp : ιιο
Known 46dcf.. : ∀ x0 x1 x2 x3 . atleastp x2 x3TwoRamseyProp x0 x1 x2TwoRamseyProp x0 x1 x3
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Param equipequip : ιιο
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Param exp_natexp_nat : ιιι
Known db1de.. : exp_nat 2 4 = 16
Param nat_pnat_p : ιο
Known 293d3.. : ∀ x0 . nat_p x0equip (prim4 x0) (exp_nat 2 x0)
Known nat_4nat_4 : nat_p 4
Known nat_In_atleastp : ∀ x0 . nat_p x0∀ x1 . x1x0atleastp x1 x0
Known nat_17nat_17 : nat_p 17
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Theorem 485cd..not_TwoRamseyProp_4_4_Power_4 : not (TwoRamseyProp 4 4 (prim4 4)) (proof)
Param TwoRamseyProp_atleastp : ιιιο
Known b8b19.. : ∀ x0 x1 x2 . TwoRamseyProp_atleastp x0 x1 x2TwoRamseyProp x0 x1 x2
Known TwoRamseyProp_atleastp_atleastp : ∀ x0 x1 x2 x3 x4 . TwoRamseyProp x0 x2 x4atleastp x1 x0atleastp x3 x2TwoRamseyProp_atleastp x1 x3 x4
Known atleastp_ref : ∀ x0 . atleastp x0 x0
Known nat_5nat_5 : nat_p 5
Known In_4_5In_4_5 : 45
Theorem 5b30a..not_TwoRamseyProp_4_5_Power_4 : not (TwoRamseyProp 4 5 (prim4 4)) (proof)