Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
8d527..
PUhap..
/
8adcc..
vout
PrCit..
/
278f7..
3.94 bars
TMLgv..
/
bf1ed..
ownership of
18a4e..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMUuQ..
/
a8311..
ownership of
738c4..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMNke..
/
69e3f..
ownership of
9a487..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMMtE..
/
42d2e..
ownership of
3ca76..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PUQwi..
/
e2532..
doc published by
Pr4zB..
Param
nat_p
nat_p
:
ι
→
ο
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
DirGraphOutNeighbors
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
λ x2 .
{x3 ∈
x0
|
and
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
(
x1
x2
x3
)
}
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
equip
equip
:
ι
→
ι
→
ο
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Param
setsum
setsum
:
ι
→
ι
→
ι
Known
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_0
nat_0
:
nat_p
0
Known
c88e0..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
add_nat
x0
x1
)
(
setsum
x2
x3
)
Known
nat_1
nat_1
:
nat_p
1
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
d778e..
:
∀ x0 x1 x2 x3 .
equip
x0
x2
⟶
equip
x1
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
nIn
x4
x1
)
⟶
equip
(
binunion
x0
x1
)
(
setsum
x2
x3
)
Known
5169f..
equip_Sing_1
:
∀ x0 .
equip
(
Sing
x0
)
u1
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
Subq_atleastp
Subq_atleastp
:
∀ x0 x1 .
x0
⊆
x1
⟶
atleastp
x0
x1
Known
binunion_Subq_min
binunion_Subq_min
:
∀ x0 x1 x2 .
x0
⊆
x2
⟶
x1
⊆
x2
⟶
binunion
x0
x1
⊆
x2
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
binintersectE
binintersectE
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
and
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
binintersectI
binintersectI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
x1
⟶
x2
∈
binintersect
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
cfabd..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
x2
∈
DirGraphOutNeighbors
x0
x1
x3
Known
6cd03..
:
∀ x0 x1 .
x1
∈
x0
⟶
Sing
x1
⊆
x0
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Theorem
9a487..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 x3 .
nat_p
x2
⟶
∀ x4 x5 .
x5
∈
DirGraphOutNeighbors
x0
x1
x4
⟶
∀ x6 x7 x8 .
x6
⊆
x0
⟶
x7
⊆
x0
⟶
x8
⊆
x0
⟶
x7
=
setminus
(
DirGraphOutNeighbors
x0
x1
x5
)
(
Sing
x4
)
⟶
x8
=
setminus
{x10 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x10
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
x3
}
x7
⟶
equip
x6
x2
⟶
(
∀ x9 .
x9
∈
x6
⟶
x9
=
x5
⟶
∀ x10 : ο .
x10
)
⟶
(
∀ x9 .
x9
∈
x6
⟶
nIn
x9
x7
)
⟶
(
∀ x9 .
x9
∈
x6
⟶
nIn
x9
x8
)
⟶
(
∀ x9 .
x9
∈
x6
⟶
nIn
x9
(
DirGraphOutNeighbors
x0
x1
x4
)
)
⟶
(
∀ x9 .
x9
∈
x6
⟶
nIn
x9
(
DirGraphOutNeighbors
x0
x1
x5
)
)
⟶
(
∀ x9 .
x9
∈
x6
⟶
∀ x10 .
x10
∈
x6
⟶
(
x9
=
x10
⟶
∀ x11 : ο .
x11
)
⟶
∀ x11 .
x11
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x9
)
(
DirGraphOutNeighbors
x0
x1
x10
)
⟶
x11
∈
x6
)
⟶
∀ x9 :
ι → ι
.
(
∀ x10 .
x10
∈
x6
⟶
x9
x10
∈
x7
)
⟶
(
∀ x10 .
x10
∈
x6
⟶
x1
x10
(
x9
x10
)
)
⟶
(
∀ x10 .
x10
∈
x7
⟶
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x6
)
(
x9
x12
=
x10
)
⟶
x11
)
⟶
x11
)
⟶
(
∀ x10 .
x10
∈
x8
⟶
or
(
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x10
)
(
DirGraphOutNeighbors
x0
x1
x5
)
)
u1
)
(
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x10
)
(
DirGraphOutNeighbors
x0
x1
x5
)
)
x3
)
)
⟶
equip
{x10 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x5
)
(
Sing
x5
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x10
)
(
DirGraphOutNeighbors
x0
x1
x5
)
)
u1
}
x2
⟶
x8
⊆
{x10 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x5
)
(
Sing
x5
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x10
)
(
DirGraphOutNeighbors
x0
x1
x5
)
)
x3
}
(proof)
Param
u3
:
ι
Param
u6
:
ι
Theorem
18a4e..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u6
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
)
)
⟶
∀ x2 x3 .
nat_p
x2
⟶
∀ x4 x5 .
x5
∈
DirGraphOutNeighbors
x0
x1
x4
⟶
∀ x6 x7 x8 .
x6
⊆
x0
⟶
x7
⊆
x0
⟶
x8
⊆
x0
⟶
x7
=
setminus
(
DirGraphOutNeighbors
x0
x1
x5
)
(
Sing
x4
)
⟶
x8
=
setminus
{x10 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x10
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
x3
}
x7
⟶
equip
x6
x2
⟶
(
∀ x9 .
x9
∈
x6
⟶
x9
=
x5
⟶
∀ x10 : ο .
x10
)
⟶
(
∀ x9 .
x9
∈
x6
⟶
nIn
x9
x7
)
⟶
(
∀ x9 .
x9
∈
x6
⟶
nIn
x9
x8
)
⟶
(
∀ x9 .
x9
∈
x6
⟶
nIn
x9
(
DirGraphOutNeighbors
x0
x1
x4
)
)
⟶
(
∀ x9 .
x9
∈
x6
⟶
nIn
x9
(
DirGraphOutNeighbors
x0
x1
x5
)
)
⟶
(
∀ x9 .
x9
∈
x6
⟶
∀ x10 .
x10
∈
x6
⟶
(
x9
=
x10
⟶
∀ x11 : ο .
x11
)
⟶
∀ x11 .
x11
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x9
)
(
DirGraphOutNeighbors
x0
x1
x10
)
⟶
x11
∈
x6
)
⟶
∀ x9 :
ι → ι
.
(
∀ x10 .
x10
∈
x6
⟶
x9
x10
∈
x7
)
⟶
(
∀ x10 .
x10
∈
x6
⟶
x1
x10
(
x9
x10
)
)
⟶
(
∀ x10 .
x10
∈
x7
⟶
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x6
)
(
x9
x12
=
x10
)
⟶
x11
)
⟶
x11
)
⟶
(
∀ x10 .
x10
∈
x8
⟶
or
(
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x10
)
(
DirGraphOutNeighbors
x0
x1
x5
)
)
u1
)
(
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x10
)
(
DirGraphOutNeighbors
x0
x1
x5
)
)
x3
)
)
⟶
equip
{x10 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x5
)
(
Sing
x5
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x10
)
(
DirGraphOutNeighbors
x0
x1
x5
)
)
u1
}
x2
⟶
x8
⊆
{x10 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x5
)
(
Sing
x5
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x10
)
(
DirGraphOutNeighbors
x0
x1
x5
)
)
x3
}
(proof)