Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . (wceq cvts (cmpt2 (λ x1 x2 . co cc cn cmap) (λ x1 x2 . cn0) (λ x1 x2 . cmpt (λ x3 . cc) (λ x3 . csu (co c1 (cv x2) cfz) (λ x4 . co (cfv (cv x4) (cv x1)) (cfv (co (co ci (co c2 cpi cmul) cmul) (co (cv x4) (cv x3) cmul) cmul) ce) cmul))))wral (λ x1 . wbr (co (cdc c1 cc0) (cdc c2 c7) cexp) (cv x1) clewrex (λ x2 . wrex (λ x3 . w3a (wral (λ x4 . wbr (cfv (cv x4) (cv x3)) (co c1 (cdp2 cc0 (cdp2 c7 (cdp2 c9 (cdp2 c9 (cdp2 c5 c5))))) cdp) cle) (λ x4 . cn)) (wral (λ x4 . wbr (cfv (cv x4) (cv x2)) (co c1 (cdp2 c4 (cdp2 c1 c4)) cdp) cle) (λ x4 . cn)) (wbr (co (co cc0 (cdp2 cc0 (cdp2 cc0 (cdp2 cc0 (cdp2 c4 (cdp2 c2 (cdp2 c2 (cdp2 c4 c8))))))) cdp) (co (cv x1) c2 cexp) cmul) (citg (λ x4 . co cc0 c1 cioo) (λ x4 . co (co (cfv (cv x4) (co (co cvma (cv x2) (cof cmul)) (cv x1) cvts)) (co (cfv (cv x4) (co (co cvma (cv x3) (cof cmul)) (cv x1) cvts)) c2 cexp) cmul) (cfv (co (co ci (co c2 cpi cmul) cmul) (co (cneg (cv x1)) (cv x4) cmul) cmul) ce) cmul)) cle)) (λ x3 . co (co cc0 cpnf cico) cn cmap)) (λ x2 . co (co cc0 cpnf cico) cn cmap)) (λ x1 . crab (λ x2 . wn (wbr c2 (cv x2) cdvds)) (λ x2 . cz))wral (λ x1 . wbr (cfv (cv x1) cchp) (co (co c1 (cdp2 cc0 (cdp2 c3 (cdp2 c8 (cdp2 c8 c3)))) cdp) (cv x1) cmul) clt) (λ x1 . crp)wral (λ x1 . wbr (co (cfv (cv x1) cchp) (cfv (cv x1) ccht) cmin) (co (co c1 (cdp2 c4 (cdp2 c2 (cdp2 c6 c2))) cdp) (cfv (cv x1) csqrt) cmul) clt) (λ x1 . crp)wceq cstrkg2d (cab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wa (wrex (λ x5 . wrex (λ x6 . wrex (λ x7 . wn (w3o (wcel (cv x7) (co (cv x5) (cv x6) (cv x4))) (wcel (cv x5) (co (cv x7) (cv x6) (cv x4))) (wcel (cv x6) (co (cv x5) (cv x7) (cv x4))))) (λ x7 . cv x2)) (λ x6 . cv x2)) (λ x5 . cv x2)) (wral (λ x5 . wral (λ x6 . wral (λ x7 . wral (λ x8 . wral (λ x9 . wa (w3a (wceq (co (cv x5) (cv x8) (cv x3)) (co (cv x5) (cv x9) (cv x3))) (wceq (co (cv x6) (cv x8) (cv x3)) (co (cv x6) (cv x9) (cv x3))) (wceq (co (cv x7) (cv x8) (cv x3)) (co (cv x7) (cv x9) (cv x3)))) (wne (cv x8) (cv x9))w3o (wcel (cv x7) (co (cv x5) (cv x6) (cv x4))) (wcel (cv x5) (co (cv x7) (cv x6) (cv x4))) (wcel (cv x6) (co (cv x5) (cv x7) (cv x4)))) (λ x9 . cv x2)) (λ x8 . cv x2)) (λ x7 . cv x2)) (λ x6 . cv x2)) (λ x5 . cv x2))) (cfv (cv x1) citv)) (cfv (cv x1) cds)) (cfv (cv x1) cbs)))wceq cafs (cmpt (λ x1 . cstrkg) (λ x1 . copab (λ x2 x3 . wsbc (λ x4 . wsbc (λ x5 . wsbc (λ x6 . wrex (λ x7 . wrex (λ x8 . wrex (λ x9 . wrex (λ x10 . wrex (λ x11 . wrex (λ x12 . wrex (λ x13 . wrex (λ x14 . w3a (wceq (cv x2) (cop (cop (cv x7) (cv x8)) (cop (cv x9) (cv x10)))) (wceq (cv x3) (cop (cop (cv x11) (cv x12)) (cop (cv x13) (cv x14)))) (w3a (wa (wcel (cv x8) (co (cv x7) (cv x9) (cv x6))) (wcel (cv x12) (co (cv x11) (cv x13) (cv x6)))) (wa (wceq (co (cv x7) (cv x8) (cv x5)) (co (cv x11) (cv x12) (cv x5))) (wceq (co (cv x8) (cv x9) (cv x5)) (co (cv x12) (cv x13) (cv x5)))) (wa (wceq (co (cv x7) (cv x10) (cv x5)) (co (cv x11) (cv x14) (cv x5))) (wceq (co (cv x8) (cv x10) (cv x5)) (co (cv x12) (cv x14) (cv x5)))))) (λ x14 . cv x4)) (λ x13 . cv x4)) (λ x12 . cv x4)) (λ x11 . cv x4)) (λ x10 . cv x4)) (λ x9 . cv x4)) (λ x8 . cv x4)) (λ x7 . cv x4)) (cfv (cv x1) citv)) (cfv (cv x1) cds)) (cfv (cv x1) cbs))))(∀ x1 x2 x3 x4 : ο . wb (w_bnj17 x1 x2 x3 x4) (wa (w3a x1 x2 x3) x4))(∀ x1 x2 x3 : ι → ο . wceq (c_bnj14 x1 x2 x3) (crab (λ x4 . wbr (cv x4) x3 x2) (λ x4 . x1)))(∀ x1 x2 : ι → ο . wb (w_bnj13 x1 x2) (wral (λ x3 . wcel (c_bnj14 x1 x2 (cv x3)) cvv) (λ x3 . x1)))(∀ x1 x2 : ι → ο . wb (w_bnj15 x1 x2) (wa (wfr x1 x2) (w_bnj13 x1 x2)))(∀ x1 x2 x3 : ι → ο . wceq (c_bnj18 x1 x2 x3) (ciun (λ x4 . cab (λ x5 . wrex (λ x6 . w3a (wfn (cv x5) (cv x6)) (wceq (cfv c0 (cv x5)) (c_bnj14 x1 x2 x3)) (wral (λ x7 . wcel (csuc (cv x7)) (cv x6)wceq (cfv (csuc (cv x7)) (cv x5)) (ciun (λ x8 . cfv (cv x7) (cv x5)) (λ x8 . c_bnj14 x1 x2 (cv x8)))) (λ x7 . com))) (λ x6 . cdif com (csn c0)))) (λ x4 . ciun (λ x5 . cdm (cv x4)) (λ x5 . cfv (cv x5) (cv x4)))))(∀ x1 x2 x3 : ι → ο . wb (w_bnj19 x1 x2 x3) (wral (λ x4 . wss (c_bnj14 x1 x3 (cv x4)) x2) (λ x4 . x2)))(∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3)∀ x2 x3 . x1 x3 x2)(∀ x1 x2 x3 . wceq (cv x1) (cv x2)wceq (cv x1) (cv x3)wceq (cv x2) (cv x3))wn (∀ x1 . wn (wceq (cv x1) (cv x1)))(∀ x1 . wn (∀ x2 . wn (wceq (cv x2) (cv x1))))(∀ x1 x2 . (∀ x3 . wceq (cv x3) (cv x2))∀ x3 . wceq (cv x3) (cv x1))(∀ x1 : ι → ι → ο . ∀ x2 x3 . wceq (cv x2) (cv x3)(∀ x4 . x1 x2 x4)∀ x4 . wceq (cv x4) (cv x3)x1 x4 x3)x0)x0
type
prop
theory
SetMM
name
df_vts__ax_hgt749__ax_ros335__ax_ros336__df_trkg2d__df_afs__df_bnj17__df_bnj14__df_bnj13__df_bnj15__df_bnj18__df_bnj19__ax_7d__ax_8d__ax_9d1__ax_9d2__ax_10d__ax_11d
proof
PUV1k..
Megalodon
-
proofgold address
TMJaa..
creator
36224 PrCmT../d39c8..
owner
36224 PrCmT../d39c8..
term root
a2b55..