Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
f8369..
PUYYy..
/
9080f..
vout
PrCit..
/
eb86f..
3.93 bars
TMQ3J..
/
6d92f..
ownership of
02907..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMGqk..
/
80b78..
ownership of
66da7..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PUSK4..
/
52021..
doc published by
Pr4zB..
Param
equip
equip
:
ι
→
ι
→
ο
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
DirGraphOutNeighbors
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
λ x2 .
{x3 ∈
x0
|
and
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
(
x1
x2
x3
)
}
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Param
SetAdjoin
SetAdjoin
:
ι
→
ι
→
ι
Param
UPair
UPair
:
ι
→
ι
→
ι
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Param
nat_p
nat_p
:
ι
→
ο
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
nat_4
nat_4
:
nat_p
4
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
Subq_atleastp
Subq_atleastp
:
∀ x0 x1 .
x0
⊆
x1
⟶
atleastp
x0
x1
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
cfabd..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
x2
∈
DirGraphOutNeighbors
x0
x1
x3
Known
14338..
:
∀ x0 x1 x2 x3 .
x2
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
b253c..
:
∀ x0 x1 x2 x3 .
x3
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
binintersectI
binintersectI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
x1
⟶
x2
∈
binintersect
x0
x1
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
69a9c..
:
∀ x0 x1 x2 x3 .
x0
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
e588e..
:
∀ x0 x1 x2 x3 .
x1
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
76c0f..
:
∀ x0 x1 x2 x3 .
x3
∈
SetAdjoin
(
UPair
x0
x1
)
x2
⟶
∀ x4 :
ι → ο
.
x4
x0
⟶
x4
x1
⟶
x4
x2
⟶
x4
x3
Known
38089..
:
∀ x0 x1 x2 x3 .
atleastp
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
u4
Theorem
02907..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
equip
(
DirGraphOutNeighbors
x0
x1
x2
)
u5
)
⟶
∀ x2 x3 x4 x5 x6 x7 .
x6
⊆
x0
⟶
x5
⊆
x0
⟶
x6
=
{x9 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x2
)
(
Sing
x2
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x9
)
(
DirGraphOutNeighbors
x0
x1
x2
)
)
u1
}
⟶
x4
=
setminus
(
DirGraphOutNeighbors
x0
x1
x2
)
(
Sing
x3
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
not
(
x1
x3
x8
)
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 : ο .
(
x8
=
x2
⟶
x9
)
⟶
(
x8
=
x3
⟶
x9
)
⟶
(
x8
∈
x4
⟶
x9
)
⟶
(
x8
∈
x5
⟶
x9
)
⟶
(
x8
∈
x6
⟶
x9
)
⟶
(
x8
∈
x7
⟶
x9
)
⟶
x9
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
∀ x9 : ο .
(
∀ x10 .
x10
∈
x6
⟶
∀ x11 .
x11
∈
x6
⟶
(
x10
=
x11
⟶
∀ x12 : ο .
x12
)
⟶
x10
∈
DirGraphOutNeighbors
x0
x1
x8
⟶
x11
∈
DirGraphOutNeighbors
x0
x1
x8
⟶
not
(
x1
x10
x11
)
⟶
(
∀ x12 .
x12
∈
x6
⟶
nIn
x12
(
SetAdjoin
(
UPair
x8
x10
)
x11
)
⟶
not
(
x1
x8
x12
)
)
⟶
x9
)
⟶
x9
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
∀ x9 .
x9
∈
x6
⟶
(
x8
=
x9
⟶
∀ x10 : ο .
x10
)
⟶
∀ x10 .
x10
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x8
)
(
DirGraphOutNeighbors
x0
x1
x9
)
⟶
x10
∈
x6
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
nIn
x8
x5
)
⟶
∀ x8 x9 :
ι → ι
.
(
∀ x10 .
x10
∈
x6
⟶
∀ x11 .
x11
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
x1
x11
x10
⟶
x11
=
x8
x10
)
⟶
(
∀ x10 .
x10
∈
x6
⟶
x9
x10
∈
x5
)
⟶
(
∀ x10 .
x10
∈
x6
⟶
x1
x10
(
x9
x10
)
)
⟶
(
∀ x10 .
x10
∈
x5
⟶
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x6
)
(
x9
x12
=
x10
)
⟶
x11
)
⟶
x11
)
⟶
∀ x10 .
x10
∈
x6
⟶
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x7
)
(
x1
x10
x12
)
⟶
x11
)
⟶
x11
(proof)
Theorem
02907..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
equip
(
DirGraphOutNeighbors
x0
x1
x2
)
u5
)
⟶
∀ x2 x3 x4 x5 x6 x7 .
x6
⊆
x0
⟶
x5
⊆
x0
⟶
x6
=
{x9 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x2
)
(
Sing
x2
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x9
)
(
DirGraphOutNeighbors
x0
x1
x2
)
)
u1
}
⟶
x4
=
setminus
(
DirGraphOutNeighbors
x0
x1
x2
)
(
Sing
x3
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
not
(
x1
x3
x8
)
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 : ο .
(
x8
=
x2
⟶
x9
)
⟶
(
x8
=
x3
⟶
x9
)
⟶
(
x8
∈
x4
⟶
x9
)
⟶
(
x8
∈
x5
⟶
x9
)
⟶
(
x8
∈
x6
⟶
x9
)
⟶
(
x8
∈
x7
⟶
x9
)
⟶
x9
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
∀ x9 : ο .
(
∀ x10 .
x10
∈
x6
⟶
∀ x11 .
x11
∈
x6
⟶
(
x10
=
x11
⟶
∀ x12 : ο .
x12
)
⟶
x10
∈
DirGraphOutNeighbors
x0
x1
x8
⟶
x11
∈
DirGraphOutNeighbors
x0
x1
x8
⟶
not
(
x1
x10
x11
)
⟶
(
∀ x12 .
x12
∈
x6
⟶
nIn
x12
(
SetAdjoin
(
UPair
x8
x10
)
x11
)
⟶
not
(
x1
x8
x12
)
)
⟶
x9
)
⟶
x9
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
∀ x9 .
x9
∈
x6
⟶
(
x8
=
x9
⟶
∀ x10 : ο .
x10
)
⟶
∀ x10 .
x10
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x8
)
(
DirGraphOutNeighbors
x0
x1
x9
)
⟶
x10
∈
x6
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
nIn
x8
x5
)
⟶
∀ x8 x9 :
ι → ι
.
(
∀ x10 .
x10
∈
x6
⟶
∀ x11 .
x11
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
x1
x11
x10
⟶
x11
=
x8
x10
)
⟶
(
∀ x10 .
x10
∈
x6
⟶
x9
x10
∈
x5
)
⟶
(
∀ x10 .
x10
∈
x6
⟶
x1
x10
(
x9
x10
)
)
⟶
(
∀ x10 .
x10
∈
x5
⟶
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x6
)
(
x9
x12
=
x10
)
⟶
x11
)
⟶
x11
)
⟶
∀ x10 .
x10
∈
x6
⟶
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x7
)
(
x1
x10
x12
)
⟶
x11
)
⟶
x11
(proof)