λ x0 x1 . λ x2 x3 : ι → ι → ι . and (and (and (and (and (and (and (and (and (∀ x4 . prim1 x4 x0 ⟶ ∀ x5 . prim1 x5 x0 ⟶ prim1 (x2 x4 x5) x0) (∀ x4 . prim1 x4 x0 ⟶ ∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ x2 x4 (x2 x5 x6) = x2 (x2 x4 x5) x6)) (∀ x4 . prim1 x4 x0 ⟶ ∀ x5 . prim1 x5 x0 ⟶ x2 x4 x5 = x2 x5 x4)) (prim1 x1 x0)) (∀ x4 . prim1 x4 x0 ⟶ x2 x1 x4 = x4)) (∀ x4 . prim1 x4 x0 ⟶ ∀ x5 : ο . (∀ x6 . and (prim1 x6 x0) (x2 x4 x6 = x1) ⟶ x5) ⟶ x5)) (∀ x4 . prim1 x4 x0 ⟶ ∀ x5 . prim1 x5 x0 ⟶ prim1 (x3 x4 x5) x0)) (∀ x4 . prim1 x4 x0 ⟶ ∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ x3 x4 (x3 x5 x6) = x3 (x3 x4 x5) x6)) (∀ x4 . prim1 x4 x0 ⟶ ∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ x3 x4 (x2 x5 x6) = x2 (x3 x4 x5) (x3 x4 x6))) (∀ x4 . prim1 x4 x0 ⟶ ∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ x3 (x2 x4 x5) x6 = x2 (x3 x4 x6) (x3 x5 x6)) |
|
type |
---|
ι → ι → (ι → ι → ι) → (ι → ι → ι) → ο |
|
|
|
|
|
|
|
|
|