Search for blocks/addresses/...
Proofgold Address
address
PURd1XwqnsEbMHAox1nq2c2nMSM3xQBPAbW
total
0
mg
-
conjpub
-
current assets
04904..
/
87109..
bday:
4786
doc published by
PrGxv..
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
explicit_Ring
:=
λ x0 x1 .
λ x2 x3 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x2
x4
x5
)
x0
)
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x4
(
x2
x5
x6
)
=
x2
(
x2
x4
x5
)
x6
)
)
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x2
x4
x5
=
x2
x5
x4
)
)
(
prim1
x1
x0
)
)
(
∀ x4 .
prim1
x4
x0
⟶
x2
x1
x4
=
x4
)
)
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
x0
)
(
x2
x4
x6
=
x1
)
⟶
x5
)
⟶
x5
)
)
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x3
x4
x5
)
x0
)
)
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x4
(
x3
x5
x6
)
=
x3
(
x3
x4
x5
)
x6
)
)
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x4
(
x2
x5
x6
)
=
x2
(
x3
x4
x5
)
(
x3
x4
x6
)
)
)
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
(
x2
x4
x5
)
x6
=
x2
(
x3
x4
x6
)
(
x3
x5
x6
)
)
Known
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Known
and7I
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
Theorem
explicit_Ring_I
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x2
x4
x5
)
x0
)
⟶
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x4
(
x2
x5
x6
)
=
x2
(
x2
x4
x5
)
x6
)
⟶
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x2
x4
x5
=
x2
x5
x4
)
⟶
prim1
x1
x0
⟶
(
∀ x4 .
prim1
x4
x0
⟶
x2
x1
x4
=
x4
)
⟶
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
x0
)
(
x2
x4
x6
=
x1
)
⟶
x5
)
⟶
x5
)
⟶
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x3
x4
x5
)
x0
)
⟶
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x4
(
x3
x5
x6
)
=
x3
(
x3
x4
x5
)
x6
)
⟶
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x4
(
x2
x5
x6
)
=
x2
(
x3
x4
x5
)
(
x3
x4
x6
)
)
⟶
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
(
x2
x4
x5
)
x6
=
x2
(
x3
x4
x6
)
(
x3
x5
x6
)
)
⟶
explicit_Ring
x0
x1
x2
x3
(proof)
Known
and4E
:
∀ x0 x1 x2 x3 : ο .
and
(
and
(
and
x0
x1
)
x2
)
x3
⟶
∀ x4 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
)
⟶
x4
Known
and7E
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
⟶
∀ x7 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
)
⟶
x7
Theorem
explicit_Ring_E
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 : ο .
(
explicit_Ring
x0
x1
x2
x3
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x2
x5
x6
)
x0
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x2
x5
(
x2
x6
x7
)
=
x2
(
x2
x5
x6
)
x7
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
x2
x6
x5
)
⟶
prim1
x1
x0
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x2
x1
x5
=
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
prim1
x7
x0
)
(
x2
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x3
x5
x6
)
x0
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
(
x2
x6
x7
)
=
x2
(
x3
x5
x6
)
(
x3
x5
x7
)
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
(
x2
x5
x6
)
x7
=
x2
(
x3
x5
x7
)
(
x3
x6
x7
)
)
⟶
x4
)
⟶
explicit_Ring
x0
x1
x2
x3
⟶
x4
(proof)
Definition
explicit_Ring_minus
:=
λ x0 x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 .
prim0
(
λ x5 .
and
(
prim1
x5
x0
)
(
x2
x4
x5
=
x1
)
)
Known
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Theorem
explicit_Ring_minus_prop
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
explicit_Ring
x0
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x0
⟶
and
(
prim1
(
explicit_Ring_minus
x0
x1
x2
x3
x4
)
x0
)
(
x2
x4
(
explicit_Ring_minus
x0
x1
x2
x3
x4
)
=
x1
)
(proof)
Theorem
explicit_Ring_minus_clos
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
explicit_Ring
x0
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
explicit_Ring_minus
x0
x1
x2
x3
x4
)
x0
(proof)
Theorem
explicit_Ring_minus_R
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
explicit_Ring
x0
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x4
(
explicit_Ring_minus
x0
x1
x2
x3
x4
)
=
x1
(proof)
Theorem
explicit_Ring_minus_L
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
explicit_Ring
x0
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
(
explicit_Ring_minus
x0
x1
x2
x3
x4
)
x4
=
x1
(proof)
Theorem
explicit_Ring_plus_cancelL
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
explicit_Ring
x0
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x4
x5
=
x2
x4
x6
⟶
x5
=
x6
(proof)
Theorem
explicit_Ring_plus_cancelR
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
explicit_Ring
x0
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x4
x6
=
x2
x5
x6
⟶
x4
=
x5
(proof)
Theorem
explicit_Ring_minus_invol
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
explicit_Ring
x0
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x0
⟶
explicit_Ring_minus
x0
x1
x2
x3
(
explicit_Ring_minus
x0
x1
x2
x3
x4
)
=
x4
(proof)
Definition
explicit_Ring_with_id
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x3
x5
x6
)
x0
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
)
(
prim1
x1
x0
)
)
(
∀ x5 .
prim1
x5
x0
⟶
x3
x1
x5
=
x5
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
prim1
x7
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x4
x5
x6
)
x0
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
)
(
prim1
x2
x0
)
)
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
)
(
∀ x5 .
prim1
x5
x0
⟶
x4
x2
x5
=
x5
)
)
(
∀ x5 .
prim1
x5
x0
⟶
x4
x5
x2
=
x5
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
(
x3
x5
x6
)
x7
=
x3
(
x4
x5
x7
)
(
x4
x6
x7
)
)
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
explicit_Ring_with_id_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x3
x5
x6
)
x0
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
⟶
prim1
x1
x0
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x3
x1
x5
=
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
prim1
x7
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x4
x5
x6
)
x0
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
⟶
prim1
x2
x0
⟶
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x4
x2
x5
=
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x4
x5
x2
=
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
(
x3
x5
x6
)
x7
=
x3
(
x4
x5
x7
)
(
x4
x6
x7
)
)
⟶
explicit_Ring_with_id
x0
x1
x2
x3
x4
(proof)
Theorem
explicit_Ring_with_id_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x3
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
prim1
x1
x0
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
prim1
x8
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x4
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
prim1
x2
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x4
x6
x2
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
(
x3
x6
x7
)
x8
=
x3
(
x4
x6
x8
)
(
x4
x7
x8
)
)
⟶
x5
)
⟶
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
x5
(proof)
Theorem
explicit_Ring_with_id_Ring
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
explicit_Ring
x0
x1
x3
x4
(proof)
Theorem
explicit_Ring_with_id_minus_clos
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
x0
(proof)
Theorem
explicit_Ring_with_id_minus_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x3
x5
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
=
x1
(proof)
Theorem
explicit_Ring_with_id_minus_L
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x3
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
x5
=
x1
(proof)
Theorem
explicit_Ring_with_id_plus_cancelL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
x6
=
x3
x5
x7
⟶
x6
=
x7
(proof)
Theorem
explicit_Ring_with_id_plus_cancelR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
x7
=
x3
x6
x7
⟶
x5
=
x6
(proof)
Theorem
explicit_Ring_with_id_minus_invol
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
explicit_Ring_minus
x0
x1
x3
x4
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
=
x5
(proof)
Theorem
explicit_Ring_with_id_minus_one_In
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
prim1
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
x0
(proof)
Theorem
explicit_Ring_with_id_zero_multR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x4
x5
x1
=
x1
(proof)
Theorem
explicit_Ring_with_id_zero_multL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x4
x1
x5
=
x1
(proof)
Theorem
explicit_Ring_with_id_minus_mult
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
explicit_Ring_minus
x0
x1
x3
x4
x5
=
x4
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
x5
(proof)
Theorem
explicit_Ring_with_id_mult_minus
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
explicit_Ring_minus
x0
x1
x3
x4
x5
=
x4
x5
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
(proof)
Theorem
explicit_Ring_with_id_minus_one_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
x4
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
=
x2
(proof)
Theorem
explicit_Ring_with_id_minus_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x4
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
=
x4
x5
x5
(proof)
Param
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
explicit_Ring_with_id_exp_nat
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 .
nat_primrec
x2
(
λ x6 .
x4
x5
)
Definition
explicit_CRing_with_id
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x3
x5
x6
)
x0
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
)
(
prim1
x1
x0
)
)
(
∀ x5 .
prim1
x5
x0
⟶
x3
x1
x5
=
x5
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
prim1
x7
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x4
x5
x6
)
x0
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x4
x5
x6
=
x4
x6
x5
)
)
(
prim1
x2
x0
)
)
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
)
(
∀ x5 .
prim1
x5
x0
⟶
x4
x2
x5
=
x5
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
Theorem
explicit_CRing_with_id_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x3
x5
x6
)
x0
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
⟶
prim1
x1
x0
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x3
x1
x5
=
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
prim1
x7
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x4
x5
x6
)
x0
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x4
x5
x6
=
x4
x6
x5
)
⟶
prim1
x2
x0
⟶
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x4
x2
x5
=
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
⟶
explicit_CRing_with_id
x0
x1
x2
x3
x4
(proof)
Theorem
explicit_CRing_with_id_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x3
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
prim1
x1
x0
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
prim1
x8
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x4
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
prim1
x2
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
x5
)
⟶
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
x5
(proof)
Theorem
explicit_CRing_with_id_Ring_with_id
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
explicit_Ring_with_id
x0
x1
x2
x3
x4
(proof)
Theorem
explicit_CRing_with_id_Ring
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
explicit_Ring
x0
x1
x3
x4
(proof)
Theorem
explicit_CRing_with_id_minus_clos
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
x0
(proof)
Theorem
explicit_CRing_with_id_minus_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x3
x5
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
=
x1
(proof)
Theorem
explicit_CRing_with_id_minus_L
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x3
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
x5
=
x1
(proof)
Theorem
explicit_CRing_with_id_plus_cancelL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
x6
=
x3
x5
x7
⟶
x6
=
x7
(proof)
Theorem
explicit_CRing_with_id_plus_cancelR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
x7
=
x3
x6
x7
⟶
x5
=
x6
(proof)
Theorem
explicit_CRing_with_id_minus_invol
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
explicit_Ring_minus
x0
x1
x3
x4
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
=
x5
(proof)
Theorem
explicit_CRing_with_id_minus_one_In
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
prim1
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
x0
(proof)
Theorem
explicit_CRing_with_id_zero_multR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x4
x5
x1
=
x1
(proof)
Theorem
explicit_CRing_with_id_zero_multL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x4
x1
x5
=
x1
(proof)
Theorem
explicit_CRing_with_id_minus_mult
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
explicit_Ring_minus
x0
x1
x3
x4
x5
=
x4
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
x5
(proof)
Theorem
explicit_CRing_with_id_mult_minus
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
explicit_Ring_minus
x0
x1
x3
x4
x5
=
x4
x5
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
(proof)
Theorem
explicit_CRing_with_id_minus_one_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
x4
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
=
x2
(proof)
Theorem
explicit_CRing_with_id_minus_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x4
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
=
x4
x5
x5
(proof)
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
eb53d..
:
ι
→
CT2
ι
Definition
e707a..
:=
λ x0 .
λ x1 x2 :
ι →
ι → ι
.
λ x3 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
(
eb53d..
x0
x1
)
(
If_i
(
x4
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
eb53d..
x0
x2
)
x3
)
)
)
Param
f482f..
:
ι
→
ι
→
ι
Known
dcdae..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 .
x0
=
e707a..
x1
x2
x3
x4
⟶
x1
=
f482f..
x0
4a7ef..
Known
53a20..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 .
x0
=
f482f..
(
e707a..
x0
x1
x2
x3
)
4a7ef..
Param
e3162..
:
ι
→
ι
→
ι
→
ι
Known
edc55..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 .
x0
=
e707a..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x2
x5
x6
=
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x5
x6
Known
a698e..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x1
x4
x5
=
e3162..
(
f482f..
(
e707a..
x0
x1
x2
x3
)
(
4ae4a..
4a7ef..
)
)
x4
x5
Known
0a774..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 .
x0
=
e707a..
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x3
x5
x6
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
Known
7bf04..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x2
x4
x5
=
e3162..
(
f482f..
(
e707a..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
x5
Known
f3f77..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 .
x0
=
e707a..
x1
x2
x3
x4
⟶
x4
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Known
54060..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 .
x3
=
f482f..
(
e707a..
x0
x1
x2
x3
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Known
63f04..
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι →
ι → ι
.
∀ x6 x7 .
e707a..
x0
x2
x4
x6
=
e707a..
x1
x3
x5
x7
⟶
and
(
and
(
and
(
x0
=
x1
)
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x2
x8
x9
=
x3
x8
x9
)
)
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x4
x8
x9
=
x5
x8
x9
)
)
(
x6
=
x7
)
Known
abad8..
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι →
ι → ι
.
∀ x5 .
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x1
x6
x7
=
x2
x6
x7
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x6
x7
=
x4
x6
x7
)
⟶
e707a..
x0
x1
x3
x5
=
e707a..
x0
x2
x4
x5
Definition
06179..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
∀ x5 .
prim1
x5
x2
⟶
x1
(
e707a..
x2
x3
x4
x5
)
)
⟶
x1
x0
Known
0cbd8..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
∀ x3 .
prim1
x3
x0
⟶
06179..
(
e707a..
x0
x1
x2
x3
)
Known
d484b..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 .
06179..
(
e707a..
x0
x1
x2
x3
)
⟶
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x1
x4
x5
)
x0
Known
e4f10..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 .
06179..
(
e707a..
x0
x1
x2
x3
)
⟶
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x2
x4
x5
)
x0
Known
02d3f..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 .
06179..
(
e707a..
x0
x1
x2
x3
)
⟶
prim1
x3
x0
Known
b91ee..
:
∀ x0 .
06179..
x0
⟶
x0
=
e707a..
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Definition
677e4..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Known
cff9f..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι → ι
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x2
x6
x7
=
x5
x6
x7
)
⟶
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x3
x7
x8
=
x6
x7
x8
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
677e4..
(
e707a..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
Definition
2f4b2..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Known
ad938..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι → ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x2
x6
x7
=
x5
x6
x7
)
⟶
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x3
x7
x8
=
x6
x7
x8
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
2f4b2..
(
e707a..
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
Definition
fa6a5..
:=
λ x0 .
and
(
06179..
x0
)
(
2f4b2..
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 .
explicit_Ring
x1
x4
x2
x3
)
)
Definition
c77b5..
:=
λ x0 .
λ x1 x2 :
ι →
ι → ι
.
λ x3 x4 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
eb53d..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
eb53d..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
Known
90132..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
x0
=
c77b5..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
Known
cb757..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
x0
=
f482f..
(
c77b5..
x0
x1
x2
x3
x4
)
4a7ef..
Known
1b277..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
x0
=
c77b5..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x2
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
x7
Known
bdaba..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x1
x5
x6
=
e3162..
(
f482f..
(
c77b5..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
x6
Known
45d05..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
x0
=
c77b5..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
Known
74356..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
e3162..
(
f482f..
(
c77b5..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
Known
8307f..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
x0
=
c77b5..
x1
x2
x3
x4
x5
⟶
x4
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Known
73020..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
x3
=
f482f..
(
c77b5..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Known
85b9b..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
x0
=
c77b5..
x1
x2
x3
x4
x5
⟶
x5
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Known
e32d8..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
x4
=
f482f..
(
c77b5..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Known
d0777..
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι →
ι → ι
.
∀ x6 x7 x8 x9 .
c77b5..
x0
x2
x4
x6
x8
=
c77b5..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x2
x10
x11
=
x3
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
x6
=
x7
)
)
(
x8
=
x9
)
Known
836a9..
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι →
ι → ι
.
∀ x5 x6 .
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x1
x7
x8
=
x2
x7
x8
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
x7
x8
=
x4
x7
x8
)
⟶
c77b5..
x0
x1
x3
x5
x6
=
c77b5..
x0
x2
x4
x5
x6
Definition
3f0d0..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
x1
(
c77b5..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Known
9b39d..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
3f0d0..
(
c77b5..
x0
x1
x2
x3
x4
)
Known
38e2b..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
3f0d0..
(
c77b5..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x1
x5
x6
)
x0
Known
2ca4b..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
3f0d0..
(
c77b5..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x2
x5
x6
)
x0
Known
f7980..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
3f0d0..
(
c77b5..
x0
x1
x2
x3
x4
)
⟶
prim1
x3
x0
Known
619d5..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
3f0d0..
(
c77b5..
x0
x1
x2
x3
x4
)
⟶
prim1
x4
x0
Known
a296b..
:
∀ x0 .
3f0d0..
x0
⟶
x0
=
c77b5..
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Definition
92512..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Known
242ff..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
x0
x1
x6
x7
x4
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
92512..
(
c77b5..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
Definition
c3510..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Known
24f4f..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
x0
x1
x6
x7
x4
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
c3510..
(
c77b5..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
Definition
d7e73..
:=
λ x0 .
and
(
3f0d0..
x0
)
(
c3510..
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 x5 .
explicit_Ring_with_id
x1
x4
x5
x2
x3
)
)
Definition
dac20..
:=
λ x0 .
and
(
3f0d0..
x0
)
(
c3510..
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 x5 .
explicit_CRing_with_id
x1
x4
x5
x2
x3
)
)
Definition
2f4c2..
:=
λ x0 x1 .
677e4..
x0
(
λ x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 .
explicit_Ring_minus
x2
x5
x3
x4
x1
)
Definition
e33f8..
:=
λ x0 .
92512..
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 x5 .
e707a..
x1
x2
x3
x4
)
previous assets