Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrMSx..
/
d8eb5..
PUN9b..
/
3de95..
vout
PrMSx..
/
0e15b..
0.10 bars
TMV81..
/
20e10..
ownership of
83f09..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKH8..
/
93880..
ownership of
8fba3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEmb..
/
6f3c1..
ownership of
39054..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaXR..
/
548de..
ownership of
bbfa6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdaB..
/
fed92..
ownership of
c759b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWt1..
/
4d937..
ownership of
341a3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSHr..
/
4868a..
ownership of
6c53b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWuC..
/
c16b4..
ownership of
406e3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKd6..
/
98595..
ownership of
e9dc9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFk9..
/
a4c66..
ownership of
7812e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaAC..
/
f4186..
ownership of
0d2a7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRhf..
/
9e2bb..
ownership of
040c5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM2K..
/
6401e..
ownership of
1b37e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYDi..
/
927c5..
ownership of
b922a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZtG..
/
c0b48..
ownership of
6ec07..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMU8G..
/
c2213..
ownership of
53a24..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMF4u..
/
5439e..
ownership of
62e18..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHE1..
/
3d9d6..
ownership of
30976..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYFf..
/
91375..
ownership of
a7942..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEzD..
/
891e0..
ownership of
85425..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGzo..
/
8ab26..
ownership of
23cf0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ3b..
/
91d1c..
ownership of
818d2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMahk..
/
a1617..
ownership of
dec58..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYXh..
/
1da0b..
ownership of
a69d6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcjC..
/
6263b..
ownership of
fc27c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVaE..
/
201e7..
ownership of
f446c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRJ5..
/
f42aa..
ownership of
4edb8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZZb..
/
bb640..
ownership of
ca40f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRLc..
/
8b442..
ownership of
ed56a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWnf..
/
06cc8..
ownership of
fc411..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFkD..
/
224e2..
ownership of
f211f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRyb..
/
19d1f..
ownership of
b67a2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMd1H..
/
ee75d..
ownership of
787b4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNFN..
/
50378..
ownership of
64751..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNsR..
/
81530..
ownership of
d3af4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbMM..
/
eaa6d..
ownership of
e3127..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUKaw..
/
9f5bb..
doc published by
PrCmT..
Known
df_cart__df_img__df_domain__df_range__df_cup__df_cap__df_restrict__df_succf__df_apply__df_funpart__df_fullfun__df_ub__df_lb__df_altop__df_altxp__df_ofs__df_transport__df_colinear
:
∀ x0 : ο .
(
wceq
ccart
(
cdif
(
cxp
(
cxp
cvv
cvv
)
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
cpprod
cep
cep
)
cvv
)
)
)
)
⟶
wceq
cimg
(
ccom
(
cimage
(
cres
(
ccom
c2nd
c1st
)
(
cres
c1st
(
cxp
cvv
cvv
)
)
)
)
ccart
)
⟶
wceq
cdomain
(
cimage
(
cres
c1st
(
cxp
cvv
cvv
)
)
)
⟶
wceq
crange
(
cimage
(
cres
c2nd
(
cxp
cvv
cvv
)
)
)
⟶
wceq
ccup
(
cdif
(
cxp
(
cxp
cvv
cvv
)
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
cun
(
ccom
(
ccnv
c1st
)
cep
)
(
ccom
(
ccnv
c2nd
)
cep
)
)
cvv
)
)
)
)
⟶
wceq
ccap
(
cdif
(
cxp
(
cxp
cvv
cvv
)
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
cin
(
ccom
(
ccnv
c1st
)
cep
)
(
ccom
(
ccnv
c2nd
)
cep
)
)
cvv
)
)
)
)
⟶
wceq
crestrict
(
ccom
ccap
(
ctxp
c1st
(
ccom
ccart
(
ctxp
c2nd
(
ccom
crange
c1st
)
)
)
)
)
⟶
wceq
csuccf
(
ccom
ccup
(
ctxp
cid
csingle
)
)
⟶
wceq
capply
(
ccom
(
ccom
cbigcup
cbigcup
)
(
ccom
(
cdif
(
cxp
cvv
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
cres
cep
csingles
)
cvv
)
)
)
)
(
ccom
(
ccom
csingle
cimg
)
(
cpprod
cid
csingle
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cfunpart
x1
)
(
cres
x1
(
cdm
(
cin
(
ccom
(
cimage
x1
)
csingle
)
(
cxp
cvv
csingles
)
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cfullfn
x1
)
(
cun
(
cfunpart
x1
)
(
cxp
(
cdif
cvv
(
cdm
(
cfunpart
x1
)
)
)
(
csn
c0
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cub
x1
)
(
cdif
(
cxp
cvv
cvv
)
(
ccom
(
cdif
cvv
x1
)
(
ccnv
cep
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
clb
x1
)
(
cub
(
ccnv
x1
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
caltop
x1
x2
)
(
cpr
(
csn
x1
)
(
cpr
x1
(
csn
x2
)
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
caltxp
x1
x2
)
(
cab
(
λ x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wceq
(
cv
x3
)
(
caltop
(
cv
x4
)
(
cv
x5
)
)
)
(
λ x5 .
x2
)
)
(
λ x4 .
x1
)
)
)
)
⟶
wceq
cofs
(
copab
(
λ x1 x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wrex
(
λ x6 .
wrex
(
λ x7 .
wrex
(
λ x8 .
wrex
(
λ x9 .
wrex
(
λ x10 .
wrex
(
λ x11 .
w3a
(
wceq
(
cv
x1
)
(
cop
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cop
(
cv
x6
)
(
cv
x7
)
)
)
)
(
wceq
(
cv
x2
)
(
cop
(
cop
(
cv
x8
)
(
cv
x9
)
)
(
cop
(
cv
x10
)
(
cv
x11
)
)
)
)
(
w3a
(
wa
(
wbr
(
cv
x5
)
(
cop
(
cv
x4
)
(
cv
x6
)
)
cbtwn
)
(
wbr
(
cv
x9
)
(
cop
(
cv
x8
)
(
cv
x10
)
)
cbtwn
)
)
(
wa
(
wbr
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cop
(
cv
x8
)
(
cv
x9
)
)
ccgr
)
(
wbr
(
cop
(
cv
x5
)
(
cv
x6
)
)
(
cop
(
cv
x9
)
(
cv
x10
)
)
ccgr
)
)
(
wa
(
wbr
(
cop
(
cv
x4
)
(
cv
x7
)
)
(
cop
(
cv
x8
)
(
cv
x11
)
)
ccgr
)
(
wbr
(
cop
(
cv
x5
)
(
cv
x7
)
)
(
cop
(
cv
x9
)
(
cv
x11
)
)
ccgr
)
)
)
)
(
λ x11 .
cfv
(
cv
x3
)
cee
)
)
(
λ x10 .
cfv
(
cv
x3
)
cee
)
)
(
λ x9 .
cfv
(
cv
x3
)
cee
)
)
(
λ x8 .
cfv
(
cv
x3
)
cee
)
)
(
λ x7 .
cfv
(
cv
x3
)
cee
)
)
(
λ x6 .
cfv
(
cv
x3
)
cee
)
)
(
λ x5 .
cfv
(
cv
x3
)
cee
)
)
(
λ x4 .
cfv
(
cv
x3
)
cee
)
)
(
λ x3 .
cn
)
)
)
⟶
wceq
ctransport
(
coprab
(
λ x1 x2 x3 .
wrex
(
λ x4 .
wa
(
w3a
(
wcel
(
cv
x1
)
(
cxp
(
cfv
(
cv
x4
)
cee
)
(
cfv
(
cv
x4
)
cee
)
)
)
(
wcel
(
cv
x2
)
(
cxp
(
cfv
(
cv
x4
)
cee
)
(
cfv
(
cv
x4
)
cee
)
)
)
(
wne
(
cfv
(
cv
x2
)
c1st
)
(
cfv
(
cv
x2
)
c2nd
)
)
)
(
wceq
(
cv
x3
)
(
crio
(
λ x5 .
wa
(
wbr
(
cfv
(
cv
x2
)
c2nd
)
(
cop
(
cfv
(
cv
x2
)
c1st
)
(
cv
x5
)
)
cbtwn
)
(
wbr
(
cop
(
cfv
(
cv
x2
)
c2nd
)
(
cv
x5
)
)
(
cv
x1
)
ccgr
)
)
(
λ x5 .
cfv
(
cv
x4
)
cee
)
)
)
)
(
λ x4 .
cn
)
)
)
⟶
wceq
ccolin
(
ccnv
(
coprab
(
λ x1 x2 x3 .
wrex
(
λ x4 .
wa
(
w3a
(
wcel
(
cv
x3
)
(
cfv
(
cv
x4
)
cee
)
)
(
wcel
(
cv
x1
)
(
cfv
(
cv
x4
)
cee
)
)
(
wcel
(
cv
x2
)
(
cfv
(
cv
x4
)
cee
)
)
)
(
w3o
(
wbr
(
cv
x3
)
(
cop
(
cv
x1
)
(
cv
x2
)
)
cbtwn
)
(
wbr
(
cv
x1
)
(
cop
(
cv
x2
)
(
cv
x3
)
)
cbtwn
)
(
wbr
(
cv
x2
)
(
cop
(
cv
x3
)
(
cv
x1
)
)
cbtwn
)
)
)
(
λ x4 .
cn
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_cart
:
wceq
ccart
(
cdif
(
cxp
(
cxp
cvv
cvv
)
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
cpprod
cep
cep
)
cvv
)
)
)
)
(proof)
Theorem
df_img
:
wceq
cimg
(
ccom
(
cimage
(
cres
(
ccom
c2nd
c1st
)
(
cres
c1st
(
cxp
cvv
cvv
)
)
)
)
ccart
)
(proof)
Theorem
df_domain
:
wceq
cdomain
(
cimage
(
cres
c1st
(
cxp
cvv
cvv
)
)
)
(proof)
Theorem
df_range
:
wceq
crange
(
cimage
(
cres
c2nd
(
cxp
cvv
cvv
)
)
)
(proof)
Theorem
df_cup
:
wceq
ccup
(
cdif
(
cxp
(
cxp
cvv
cvv
)
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
cun
(
ccom
(
ccnv
c1st
)
cep
)
(
ccom
(
ccnv
c2nd
)
cep
)
)
cvv
)
)
)
)
(proof)
Theorem
df_cap
:
wceq
ccap
(
cdif
(
cxp
(
cxp
cvv
cvv
)
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
cin
(
ccom
(
ccnv
c1st
)
cep
)
(
ccom
(
ccnv
c2nd
)
cep
)
)
cvv
)
)
)
)
(proof)
Theorem
df_restrict
:
wceq
crestrict
(
ccom
ccap
(
ctxp
c1st
(
ccom
ccart
(
ctxp
c2nd
(
ccom
crange
c1st
)
)
)
)
)
(proof)
Theorem
df_succf
:
wceq
csuccf
(
ccom
ccup
(
ctxp
cid
csingle
)
)
(proof)
Theorem
df_apply
:
wceq
capply
(
ccom
(
ccom
cbigcup
cbigcup
)
(
ccom
(
cdif
(
cxp
cvv
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
cres
cep
csingles
)
cvv
)
)
)
)
(
ccom
(
ccom
csingle
cimg
)
(
cpprod
cid
csingle
)
)
)
)
(proof)
Theorem
df_funpart
:
∀ x0 :
ι → ο
.
wceq
(
cfunpart
x0
)
(
cres
x0
(
cdm
(
cin
(
ccom
(
cimage
x0
)
csingle
)
(
cxp
cvv
csingles
)
)
)
)
(proof)
Theorem
df_fullfun
:
∀ x0 :
ι → ο
.
wceq
(
cfullfn
x0
)
(
cun
(
cfunpart
x0
)
(
cxp
(
cdif
cvv
(
cdm
(
cfunpart
x0
)
)
)
(
csn
c0
)
)
)
(proof)
Theorem
df_ub
:
∀ x0 :
ι → ο
.
wceq
(
cub
x0
)
(
cdif
(
cxp
cvv
cvv
)
(
ccom
(
cdif
cvv
x0
)
(
ccnv
cep
)
)
)
(proof)
Theorem
df_lb
:
∀ x0 :
ι → ο
.
wceq
(
clb
x0
)
(
cub
(
ccnv
x0
)
)
(proof)
Theorem
df_altop
:
∀ x0 x1 :
ι → ο
.
wceq
(
caltop
x0
x1
)
(
cpr
(
csn
x0
)
(
cpr
x0
(
csn
x1
)
)
)
(proof)
Theorem
df_altxp
:
∀ x0 x1 :
ι → ο
.
wceq
(
caltxp
x0
x1
)
(
cab
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wceq
(
cv
x2
)
(
caltop
(
cv
x3
)
(
cv
x4
)
)
)
(
λ x4 .
x1
)
)
(
λ x3 .
x0
)
)
)
(proof)
Theorem
df_ofs
:
wceq
cofs
(
copab
(
λ x0 x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wrex
(
λ x6 .
wrex
(
λ x7 .
wrex
(
λ x8 .
wrex
(
λ x9 .
wrex
(
λ x10 .
w3a
(
wceq
(
cv
x0
)
(
cop
(
cop
(
cv
x3
)
(
cv
x4
)
)
(
cop
(
cv
x5
)
(
cv
x6
)
)
)
)
(
wceq
(
cv
x1
)
(
cop
(
cop
(
cv
x7
)
(
cv
x8
)
)
(
cop
(
cv
x9
)
(
cv
x10
)
)
)
)
(
w3a
(
wa
(
wbr
(
cv
x4
)
(
cop
(
cv
x3
)
(
cv
x5
)
)
cbtwn
)
(
wbr
(
cv
x8
)
(
cop
(
cv
x7
)
(
cv
x9
)
)
cbtwn
)
)
(
wa
(
wbr
(
cop
(
cv
x3
)
(
cv
x4
)
)
(
cop
(
cv
x7
)
(
cv
x8
)
)
ccgr
)
(
wbr
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cop
(
cv
x8
)
(
cv
x9
)
)
ccgr
)
)
(
wa
(
wbr
(
cop
(
cv
x3
)
(
cv
x6
)
)
(
cop
(
cv
x7
)
(
cv
x10
)
)
ccgr
)
(
wbr
(
cop
(
cv
x4
)
(
cv
x6
)
)
(
cop
(
cv
x8
)
(
cv
x10
)
)
ccgr
)
)
)
)
(
λ x10 .
cfv
(
cv
x2
)
cee
)
)
(
λ x9 .
cfv
(
cv
x2
)
cee
)
)
(
λ x8 .
cfv
(
cv
x2
)
cee
)
)
(
λ x7 .
cfv
(
cv
x2
)
cee
)
)
(
λ x6 .
cfv
(
cv
x2
)
cee
)
)
(
λ x5 .
cfv
(
cv
x2
)
cee
)
)
(
λ x4 .
cfv
(
cv
x2
)
cee
)
)
(
λ x3 .
cfv
(
cv
x2
)
cee
)
)
(
λ x2 .
cn
)
)
)
(proof)
Theorem
df_transport
:
wceq
ctransport
(
coprab
(
λ x0 x1 x2 .
wrex
(
λ x3 .
wa
(
w3a
(
wcel
(
cv
x0
)
(
cxp
(
cfv
(
cv
x3
)
cee
)
(
cfv
(
cv
x3
)
cee
)
)
)
(
wcel
(
cv
x1
)
(
cxp
(
cfv
(
cv
x3
)
cee
)
(
cfv
(
cv
x3
)
cee
)
)
)
(
wne
(
cfv
(
cv
x1
)
c1st
)
(
cfv
(
cv
x1
)
c2nd
)
)
)
(
wceq
(
cv
x2
)
(
crio
(
λ x4 .
wa
(
wbr
(
cfv
(
cv
x1
)
c2nd
)
(
cop
(
cfv
(
cv
x1
)
c1st
)
(
cv
x4
)
)
cbtwn
)
(
wbr
(
cop
(
cfv
(
cv
x1
)
c2nd
)
(
cv
x4
)
)
(
cv
x0
)
ccgr
)
)
(
λ x4 .
cfv
(
cv
x3
)
cee
)
)
)
)
(
λ x3 .
cn
)
)
)
(proof)
Theorem
df_colinear
:
wceq
ccolin
(
ccnv
(
coprab
(
λ x0 x1 x2 .
wrex
(
λ x3 .
wa
(
w3a
(
wcel
(
cv
x2
)
(
cfv
(
cv
x3
)
cee
)
)
(
wcel
(
cv
x0
)
(
cfv
(
cv
x3
)
cee
)
)
(
wcel
(
cv
x1
)
(
cfv
(
cv
x3
)
cee
)
)
)
(
w3o
(
wbr
(
cv
x2
)
(
cop
(
cv
x0
)
(
cv
x1
)
)
cbtwn
)
(
wbr
(
cv
x0
)
(
cop
(
cv
x1
)
(
cv
x2
)
)
cbtwn
)
(
wbr
(
cv
x1
)
(
cop
(
cv
x2
)
(
cv
x0
)
)
cbtwn
)
)
)
(
λ x3 .
cn
)
)
)
)
(proof)