Search for blocks/addresses/...
Proofgold Proposition
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 .
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
x6
⊆
x0
⟶
explicit_Field
x6
x1
x2
x3
x4
⟶
∀ x7 : ο .
(
(
∀ x8 .
x8
∈
x6
⟶
explicit_Field_minus
x6
x1
x2
x3
x4
x8
=
explicit_Field_minus
x0
x1
x2
x3
x4
x8
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x8
∈
x6
)
⟶
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
=
Sep
x6
(
natOfOrderedField_p
x6
x1
x2
x3
x4
x5
)
⟶
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
=
{x9 ∈
Sep
x6
(
natOfOrderedField_p
x6
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
⟶
{x9 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
(
x9
=
x1
)
)
(
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
}
=
{x9 ∈
x6
|
or
(
or
(
explicit_Field_minus
x6
x1
x2
x3
x4
x9
∈
{x10 ∈
Sep
x6
(
natOfOrderedField_p
x6
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
(
x9
=
x1
)
)
(
x9
∈
{x10 ∈
Sep
x6
(
natOfOrderedField_p
x6
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
}
⟶
Sep
x0
(
explicit_OrderedField_rationalp
x0
x1
x2
x3
x4
x5
)
=
Sep
x6
(
explicit_OrderedField_rationalp
x6
x1
x2
x3
x4
x5
)
⟶
x7
)
⟶
x7
type
prop
theory
HotG
name
explicit_Reals_Q_min_props
proof
PUa4W..
Megalodon
explicit_Reals_Q_min_props
proofgold address
TMU33..
explicit_Reals_Q_min_props
creator
5731
Pr6Pc..
/
d6a94..
owner
5731
Pr6Pc..
/
d6a94..
term root
31679..