Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrL4b..
/
4d165..
PUQoZ..
/
89ab5..
vout
PrL4b..
/
07c5b..
0.10 bars
TMNG3..
/
2ca43..
ownership of
2d181..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPGw..
/
2ee2f..
ownership of
ad561..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJvT..
/
5a96c..
ownership of
dfa71..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKZ9..
/
04398..
ownership of
bb5c0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHih..
/
65b11..
ownership of
e0558..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZW1..
/
12d44..
ownership of
15c46..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTX6..
/
91f98..
ownership of
c07c1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHvr..
/
77780..
ownership of
4ec67..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMF1t..
/
f24b7..
ownership of
cbc6a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMExc..
/
7919d..
ownership of
2bdc6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQfd..
/
262d3..
ownership of
e631a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVG6..
/
98e69..
ownership of
23035..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPvF..
/
39047..
ownership of
07a2f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQyo..
/
bbaf1..
ownership of
c3246..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMakR..
/
36735..
ownership of
d95d7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPMn..
/
e8b86..
ownership of
219fc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWeg..
/
9e9f3..
ownership of
57134..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMS2g..
/
15b14..
ownership of
6cb36..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMX5T..
/
31ca5..
ownership of
b9439..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMc5C..
/
aca67..
ownership of
3e8aa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXzV..
/
04454..
ownership of
030b7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKJL..
/
1a766..
ownership of
a54ae..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKZp..
/
61c99..
ownership of
9dcc0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQAM..
/
5b857..
ownership of
b723d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVeF..
/
b99df..
ownership of
46c2d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNCm..
/
1bfe3..
ownership of
067d0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJQU..
/
d99e8..
ownership of
b02e3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXCZ..
/
ada83..
ownership of
9ca35..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWCy..
/
68128..
ownership of
cd6ef..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMG8y..
/
fc7d3..
ownership of
f9c80..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMctT..
/
3512d..
ownership of
993e0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUP9..
/
f3864..
ownership of
55165..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaBG..
/
3c6f4..
ownership of
167ac..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYTf..
/
a893e..
ownership of
d9032..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVh2..
/
36b98..
ownership of
fd9fd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGvN..
/
3e868..
ownership of
3e32d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUaCV..
/
2dc6f..
doc published by
PrCmT..
Known
df_fr__df_se__df_we__df_xp__df_rel__df_cnv__df_co__df_dm__df_rn__df_res__df_ima__df_pred__df_ord__df_on__df_lim__df_suc__df_iota__df_fun
:
∀ x0 : ο .
(
(
∀ x1 x2 :
ι → ο
.
wb
(
wfr
x1
x2
)
(
∀ x3 .
wa
(
wss
(
cv
x3
)
x1
)
(
wne
(
cv
x3
)
c0
)
⟶
wrex
(
λ x4 .
wral
(
λ x5 .
wn
(
wbr
(
cv
x5
)
(
cv
x4
)
x2
)
)
(
λ x5 .
cv
x3
)
)
(
λ x4 .
cv
x3
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
wse
x1
x2
)
(
wral
(
λ x3 .
wcel
(
crab
(
λ x4 .
wbr
(
cv
x4
)
(
cv
x3
)
x2
)
(
λ x4 .
x1
)
)
cvv
)
(
λ x3 .
x1
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
wwe
x1
x2
)
(
wa
(
wfr
x1
x2
)
(
wor
x1
x2
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
cxp
x1
x2
)
(
copab
(
λ x3 x4 .
wa
(
wcel
(
cv
x3
)
x1
)
(
wcel
(
cv
x4
)
x2
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wb
(
wrel
x1
)
(
wss
x1
(
cxp
cvv
cvv
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
ccnv
x1
)
(
copab
(
λ x2 x3 .
wbr
(
cv
x3
)
(
cv
x2
)
x1
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
ccom
x1
x2
)
(
copab
(
λ x3 x4 .
wex
(
λ x5 .
wa
(
wbr
(
cv
x3
)
(
cv
x5
)
x2
)
(
wbr
(
cv
x5
)
(
cv
x4
)
x1
)
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cdm
x1
)
(
cab
(
λ x2 .
wex
(
λ x3 .
wbr
(
cv
x2
)
(
cv
x3
)
x1
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
crn
x1
)
(
cdm
(
ccnv
x1
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
cres
x1
x2
)
(
cin
x1
(
cxp
x2
cvv
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
cima
x1
x2
)
(
crn
(
cres
x1
x2
)
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wceq
(
cpred
x1
x2
x3
)
(
cin
x1
(
cima
(
ccnv
x2
)
(
csn
x3
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wb
(
word
x1
)
(
wa
(
wtr
x1
)
(
wwe
x1
cep
)
)
)
⟶
wceq
con0
(
cab
(
λ x1 .
word
(
cv
x1
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wb
(
wlim
x1
)
(
w3a
(
word
x1
)
(
wne
x1
c0
)
(
wceq
x1
(
cuni
x1
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
csuc
x1
)
(
cun
x1
(
csn
x1
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cio
x1
)
(
cuni
(
cab
(
λ x2 .
wceq
(
cab
x1
)
(
csn
(
cv
x2
)
)
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wb
(
wfun
x1
)
(
wa
(
wrel
x1
)
(
wss
(
ccom
x1
(
ccnv
x1
)
)
cid
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_fr
:
∀ x0 x1 :
ι → ο
.
wb
(
wfr
x0
x1
)
(
∀ x2 .
wa
(
wss
(
cv
x2
)
x0
)
(
wne
(
cv
x2
)
c0
)
⟶
wrex
(
λ x3 .
wral
(
λ x4 .
wn
(
wbr
(
cv
x4
)
(
cv
x3
)
x1
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x2
)
)
(proof)
Theorem
df_se
:
∀ x0 x1 :
ι → ο
.
wb
(
wse
x0
x1
)
(
wral
(
λ x2 .
wcel
(
crab
(
λ x3 .
wbr
(
cv
x3
)
(
cv
x2
)
x1
)
(
λ x3 .
x0
)
)
cvv
)
(
λ x2 .
x0
)
)
(proof)
Theorem
df_we
:
∀ x0 x1 :
ι → ο
.
wb
(
wwe
x0
x1
)
(
wa
(
wfr
x0
x1
)
(
wor
x0
x1
)
)
(proof)
Theorem
df_xp
:
∀ x0 x1 :
ι → ο
.
wceq
(
cxp
x0
x1
)
(
copab
(
λ x2 x3 .
wa
(
wcel
(
cv
x2
)
x0
)
(
wcel
(
cv
x3
)
x1
)
)
)
(proof)
Theorem
df_rel
:
∀ x0 :
ι → ο
.
wb
(
wrel
x0
)
(
wss
x0
(
cxp
cvv
cvv
)
)
(proof)
Theorem
df_cnv
:
∀ x0 :
ι → ο
.
wceq
(
ccnv
x0
)
(
copab
(
λ x1 x2 .
wbr
(
cv
x2
)
(
cv
x1
)
x0
)
)
(proof)
Theorem
df_co
:
∀ x0 x1 :
ι → ο
.
wceq
(
ccom
x0
x1
)
(
copab
(
λ x2 x3 .
wex
(
λ x4 .
wa
(
wbr
(
cv
x2
)
(
cv
x4
)
x1
)
(
wbr
(
cv
x4
)
(
cv
x3
)
x0
)
)
)
)
(proof)
Theorem
df_dm
:
∀ x0 :
ι → ο
.
wceq
(
cdm
x0
)
(
cab
(
λ x1 .
wex
(
λ x2 .
wbr
(
cv
x1
)
(
cv
x2
)
x0
)
)
)
(proof)
Theorem
df_rn
:
∀ x0 :
ι → ο
.
wceq
(
crn
x0
)
(
cdm
(
ccnv
x0
)
)
(proof)
Theorem
df_res
:
∀ x0 x1 :
ι → ο
.
wceq
(
cres
x0
x1
)
(
cin
x0
(
cxp
x1
cvv
)
)
(proof)
Theorem
df_ima
:
∀ x0 x1 :
ι → ο
.
wceq
(
cima
x0
x1
)
(
crn
(
cres
x0
x1
)
)
(proof)
Theorem
df_pred
:
∀ x0 x1 x2 :
ι → ο
.
wceq
(
cpred
x0
x1
x2
)
(
cin
x0
(
cima
(
ccnv
x1
)
(
csn
x2
)
)
)
(proof)
Theorem
df_ord
:
∀ x0 :
ι → ο
.
wb
(
word
x0
)
(
wa
(
wtr
x0
)
(
wwe
x0
cep
)
)
(proof)
Theorem
df_on
:
wceq
con0
(
cab
(
λ x0 .
word
(
cv
x0
)
)
)
(proof)
Theorem
df_lim
:
∀ x0 :
ι → ο
.
wb
(
wlim
x0
)
(
w3a
(
word
x0
)
(
wne
x0
c0
)
(
wceq
x0
(
cuni
x0
)
)
)
(proof)
Theorem
df_suc
:
∀ x0 :
ι → ο
.
wceq
(
csuc
x0
)
(
cun
x0
(
csn
x0
)
)
(proof)
Theorem
df_iota
:
∀ x0 :
ι → ο
.
wceq
(
cio
x0
)
(
cuni
(
cab
(
λ x1 .
wceq
(
cab
x0
)
(
csn
(
cv
x1
)
)
)
)
)
(proof)
Theorem
df_fun
:
∀ x0 :
ι → ο
.
wb
(
wfun
x0
)
(
wa
(
wrel
x0
)
(
wss
(
ccom
x0
(
ccnv
x0
)
)
cid
)
)
(proof)