Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCUP..
/
634d0..
PUZ8R..
/
459b7..
vout
PrCUP..
/
c8283..
0.10 bars
TMWaN..
/
84273..
ownership of
56f7d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKfB..
/
ea3b5..
ownership of
f5de4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXeU..
/
bb23e..
ownership of
c72d9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaRw..
/
6f961..
ownership of
1c7f4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZTi..
/
926ea..
ownership of
dc82a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKWd..
/
9cda3..
ownership of
de920..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZPf..
/
8c935..
ownership of
6390a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQPU..
/
aa5bd..
ownership of
24644..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNxD..
/
9451b..
ownership of
f45f0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcz2..
/
4827a..
ownership of
769fa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWfB..
/
185a3..
ownership of
7a644..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHQv..
/
e74b8..
ownership of
f5f52..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRZS..
/
b2d49..
ownership of
6e1a6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJV9..
/
997c4..
ownership of
b48b9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSYN..
/
3437e..
ownership of
7ed3d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRJZ..
/
74021..
ownership of
977a8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMa14..
/
7482a..
ownership of
d5246..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFvt..
/
5a65d..
ownership of
85f68..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLz2..
/
63f8b..
ownership of
23e9a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFCe..
/
d5d1f..
ownership of
6b3b7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFQn..
/
9a491..
ownership of
ac15f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMR9A..
/
67214..
ownership of
f5cac..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcMi..
/
04152..
ownership of
17a52..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcUF..
/
e55b3..
ownership of
cd885..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMK8t..
/
08a54..
ownership of
d556c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcAZ..
/
2c24b..
ownership of
8f2e3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSA8..
/
191fb..
ownership of
cfdab..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFEt..
/
cc051..
ownership of
91429..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHmx..
/
cd501..
ownership of
601a7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJu1..
/
6326c..
ownership of
ff408..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVyt..
/
88b65..
ownership of
350b3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUvi..
/
efc53..
ownership of
5b6c2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaJ3..
/
fd7a2..
ownership of
f179b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMErN..
/
8184e..
ownership of
f6e85..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUtJ..
/
b2c49..
ownership of
1d626..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMU6s..
/
d018f..
ownership of
df97f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUNz5..
/
831e1..
doc published by
PrCmT..
Known
df_gzext__df_gzrep__df_gzpow__df_gzun__df_gzreg__df_gzinf__df_gzf__df_mcn__df_mvar__df_mty__df_mtc__df_mmax__df_mvt__df_mrex__df_mex__df_mdv__df_mvrs__df_mrsub
:
∀ x0 : ο .
(
wceq
cgze
(
co
(
cgol
(
co
(
co
c2o
c0
cgoe
)
(
co
c2o
c1o
cgoe
)
cgob
)
c2o
)
(
co
c0
c1o
cgoq
)
cgoi
)
⟶
wceq
cgzr
(
cmpt
(
λ x1 .
cfv
com
cfmla
)
(
λ x1 .
co
(
cgol
(
cgox
(
cgol
(
co
(
cgol
(
cv
x1
)
c1o
)
(
co
c2o
c1o
cgoq
)
cgoi
)
c2o
)
c1o
)
c3o
)
(
cgol
(
cgol
(
co
(
co
c2o
c1o
cgoe
)
(
cgox
(
co
(
co
c3o
c0
cgoe
)
(
cgol
(
cv
x1
)
c1o
)
cgoa
)
c3o
)
cgob
)
c2o
)
c1o
)
cgoi
)
)
⟶
wceq
cgzp
(
cgox
(
cgol
(
co
(
cgol
(
co
(
co
c1o
c2o
cgoe
)
(
co
c1o
c0
cgoe
)
cgob
)
c1o
)
(
co
c2o
c1o
cgoe
)
cgoi
)
c2o
)
c1o
)
⟶
wceq
cgzu
(
cgox
(
cgol
(
co
(
cgox
(
co
(
co
c2o
c1o
cgoe
)
(
co
c1o
c0
cgoe
)
cgoa
)
c1o
)
(
co
c2o
c1o
cgoe
)
cgoi
)
c2o
)
c1o
)
⟶
wceq
cgzg
(
co
(
cgox
(
co
c1o
c0
cgoe
)
c1o
)
(
cgox
(
co
(
co
c1o
c0
cgoe
)
(
cgol
(
co
(
co
c2o
c1o
cgoe
)
(
cgon
(
co
c2o
c0
cgoe
)
)
cgoi
)
c2o
)
cgoa
)
c1o
)
cgoi
)
⟶
wceq
cgzi
(
cgox
(
co
(
co
c0
c1o
cgoe
)
(
cgol
(
co
(
co
c2o
c1o
cgoe
)
(
cgox
(
co
(
co
c2o
c0
cgoe
)
(
co
c0
c1o
cgoe
)
cgoa
)
c0
)
cgoi
)
c2o
)
cgoa
)
c1o
)
⟶
wceq
cgzf
(
cab
(
λ x1 .
w3a
(
w3a
(
wtr
(
cv
x1
)
)
(
wbr
(
cv
x1
)
cgze
cprv
)
(
wbr
(
cv
x1
)
cgzp
cprv
)
)
(
w3a
(
wbr
(
cv
x1
)
cgzu
cprv
)
(
wbr
(
cv
x1
)
cgzg
cprv
)
(
wbr
(
cv
x1
)
cgzi
cprv
)
)
(
wral
(
λ x2 .
wbr
(
cv
x1
)
(
cfv
(
cv
x2
)
cgzr
)
cprv
)
(
λ x2 .
cfv
com
cfmla
)
)
)
)
⟶
wceq
cmcn
(
cslot
c1
)
⟶
wceq
cmvar
(
cslot
c2
)
⟶
wceq
cmty
(
cslot
c3
)
⟶
wceq
cmtc
(
cslot
c4
)
⟶
wceq
cmax
(
cslot
c5
)
⟶
wceq
cmvt
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crn
(
cfv
(
cv
x1
)
cmty
)
)
)
⟶
wceq
cmrex
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cword
(
cun
(
cfv
(
cv
x1
)
cmcn
)
(
cfv
(
cv
x1
)
cmvar
)
)
)
)
⟶
wceq
cmex
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cxp
(
cfv
(
cv
x1
)
cmtc
)
(
cfv
(
cv
x1
)
cmrex
)
)
)
⟶
wceq
cmdv
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cdif
(
cxp
(
cfv
(
cv
x1
)
cmvar
)
(
cfv
(
cv
x1
)
cmvar
)
)
cid
)
)
⟶
wceq
cmvrs
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
cmex
)
(
λ x2 .
cin
(
crn
(
cfv
(
cv
x2
)
c2nd
)
)
(
cfv
(
cv
x1
)
cmvar
)
)
)
)
⟶
wceq
cmrsub
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
co
(
cfv
(
cv
x1
)
cmrex
)
(
cfv
(
cv
x1
)
cmvar
)
cpm
)
(
λ x2 .
cmpt
(
λ x3 .
cfv
(
cv
x1
)
cmrex
)
(
λ x3 .
co
(
cfv
(
cun
(
cfv
(
cv
x1
)
cmcn
)
(
cfv
(
cv
x1
)
cmvar
)
)
cfrmd
)
(
ccom
(
cmpt
(
λ x4 .
cun
(
cfv
(
cv
x1
)
cmcn
)
(
cfv
(
cv
x1
)
cmvar
)
)
(
λ x4 .
cif
(
wcel
(
cv
x4
)
(
cdm
(
cv
x2
)
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cs1
(
cv
x4
)
)
)
)
(
cv
x3
)
)
cgsu
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_gzext
:
wceq
cgze
(
co
(
cgol
(
co
(
co
c2o
c0
cgoe
)
(
co
c2o
c1o
cgoe
)
cgob
)
c2o
)
(
co
c0
c1o
cgoq
)
cgoi
)
(proof)
Theorem
df_gzrep
:
wceq
cgzr
(
cmpt
(
λ x0 .
cfv
com
cfmla
)
(
λ x0 .
co
(
cgol
(
cgox
(
cgol
(
co
(
cgol
(
cv
x0
)
c1o
)
(
co
c2o
c1o
cgoq
)
cgoi
)
c2o
)
c1o
)
c3o
)
(
cgol
(
cgol
(
co
(
co
c2o
c1o
cgoe
)
(
cgox
(
co
(
co
c3o
c0
cgoe
)
(
cgol
(
cv
x0
)
c1o
)
cgoa
)
c3o
)
cgob
)
c2o
)
c1o
)
cgoi
)
)
(proof)
Theorem
df_gzpow
:
wceq
cgzp
(
cgox
(
cgol
(
co
(
cgol
(
co
(
co
c1o
c2o
cgoe
)
(
co
c1o
c0
cgoe
)
cgob
)
c1o
)
(
co
c2o
c1o
cgoe
)
cgoi
)
c2o
)
c1o
)
(proof)
Theorem
df_gzun
:
wceq
cgzu
(
cgox
(
cgol
(
co
(
cgox
(
co
(
co
c2o
c1o
cgoe
)
(
co
c1o
c0
cgoe
)
cgoa
)
c1o
)
(
co
c2o
c1o
cgoe
)
cgoi
)
c2o
)
c1o
)
(proof)
Theorem
df_gzreg
:
wceq
cgzg
(
co
(
cgox
(
co
c1o
c0
cgoe
)
c1o
)
(
cgox
(
co
(
co
c1o
c0
cgoe
)
(
cgol
(
co
(
co
c2o
c1o
cgoe
)
(
cgon
(
co
c2o
c0
cgoe
)
)
cgoi
)
c2o
)
cgoa
)
c1o
)
cgoi
)
(proof)
Theorem
df_gzinf
:
wceq
cgzi
(
cgox
(
co
(
co
c0
c1o
cgoe
)
(
cgol
(
co
(
co
c2o
c1o
cgoe
)
(
cgox
(
co
(
co
c2o
c0
cgoe
)
(
co
c0
c1o
cgoe
)
cgoa
)
c0
)
cgoi
)
c2o
)
cgoa
)
c1o
)
(proof)
Theorem
df_gzf
:
wceq
cgzf
(
cab
(
λ x0 .
w3a
(
w3a
(
wtr
(
cv
x0
)
)
(
wbr
(
cv
x0
)
cgze
cprv
)
(
wbr
(
cv
x0
)
cgzp
cprv
)
)
(
w3a
(
wbr
(
cv
x0
)
cgzu
cprv
)
(
wbr
(
cv
x0
)
cgzg
cprv
)
(
wbr
(
cv
x0
)
cgzi
cprv
)
)
(
wral
(
λ x1 .
wbr
(
cv
x0
)
(
cfv
(
cv
x1
)
cgzr
)
cprv
)
(
λ x1 .
cfv
com
cfmla
)
)
)
)
(proof)
Theorem
df_mcn
:
wceq
cmcn
(
cslot
c1
)
(proof)
Theorem
df_mvar
:
wceq
cmvar
(
cslot
c2
)
(proof)
Theorem
df_mty
:
wceq
cmty
(
cslot
c3
)
(proof)
Theorem
df_mtc
:
wceq
cmtc
(
cslot
c4
)
(proof)
Theorem
df_mmax
:
wceq
cmax
(
cslot
c5
)
(proof)
Theorem
df_mvt
:
wceq
cmvt
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crn
(
cfv
(
cv
x0
)
cmty
)
)
)
(proof)
Theorem
df_mrex
:
wceq
cmrex
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cword
(
cun
(
cfv
(
cv
x0
)
cmcn
)
(
cfv
(
cv
x0
)
cmvar
)
)
)
)
(proof)
Theorem
df_mex
:
wceq
cmex
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cxp
(
cfv
(
cv
x0
)
cmtc
)
(
cfv
(
cv
x0
)
cmrex
)
)
)
(proof)
Theorem
df_mdv
:
wceq
cmdv
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cdif
(
cxp
(
cfv
(
cv
x0
)
cmvar
)
(
cfv
(
cv
x0
)
cmvar
)
)
cid
)
)
(proof)
Theorem
df_mvrs
:
wceq
cmvrs
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
cmex
)
(
λ x1 .
cin
(
crn
(
cfv
(
cv
x1
)
c2nd
)
)
(
cfv
(
cv
x0
)
cmvar
)
)
)
)
(proof)
Theorem
df_mrsub
:
wceq
cmrsub
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
co
(
cfv
(
cv
x0
)
cmrex
)
(
cfv
(
cv
x0
)
cmvar
)
cpm
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x0
)
cmrex
)
(
λ x2 .
co
(
cfv
(
cun
(
cfv
(
cv
x0
)
cmcn
)
(
cfv
(
cv
x0
)
cmvar
)
)
cfrmd
)
(
ccom
(
cmpt
(
λ x3 .
cun
(
cfv
(
cv
x0
)
cmcn
)
(
cfv
(
cv
x0
)
cmvar
)
)
(
λ x3 .
cif
(
wcel
(
cv
x3
)
(
cdm
(
cv
x1
)
)
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cs1
(
cv
x3
)
)
)
)
(
cv
x2
)
)
cgsu
)
)
)
)
(proof)