Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCUP../634d0..
PUZ8R../459b7..
vout
PrCUP../c8283.. 0.10 bars
TMWaN../84273.. ownership of 56f7d.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMKfB../ea3b5.. ownership of f5de4.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMXeU../bb23e.. ownership of c72d9.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMaRw../6f961.. ownership of 1c7f4.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMZTi../926ea.. ownership of dc82a.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMKWd../9cda3.. ownership of de920.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMZPf../8c935.. ownership of 6390a.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMQPU../aa5bd.. ownership of 24644.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMNxD../9451b.. ownership of f45f0.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMcz2../4827a.. ownership of 769fa.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMWfB../185a3.. ownership of 7a644.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMHQv../e74b8.. ownership of f5f52.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMRZS../b2d49.. ownership of 6e1a6.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMJV9../997c4.. ownership of b48b9.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMSYN../3437e.. ownership of 7ed3d.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMRJZ../74021.. ownership of 977a8.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMa14../7482a.. ownership of d5246.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMFvt../5a65d.. ownership of 85f68.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMLz2../63f8b.. ownership of 23e9a.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMFCe../d5d1f.. ownership of 6b3b7.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMFQn../9a491.. ownership of ac15f.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMR9A../67214.. ownership of f5cac.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMcMi../04152.. ownership of 17a52.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMcUF../e55b3.. ownership of cd885.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMK8t../08a54.. ownership of d556c.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMcAZ../2c24b.. ownership of 8f2e3.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMSA8../191fb.. ownership of cfdab.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMFEt../cc051.. ownership of 91429.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMHmx../cd501.. ownership of 601a7.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMJu1../6326c.. ownership of ff408.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMVyt../88b65.. ownership of 350b3.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMUvi../efc53.. ownership of 5b6c2.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMaJ3../fd7a2.. ownership of f179b.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMErN../8184e.. ownership of f6e85.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMUtJ../b2c49.. ownership of 1d626.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMU6s../d018f.. ownership of df97f.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
PUNz5../831e1.. doc published by PrCmT..
Known df_gzext__df_gzrep__df_gzpow__df_gzun__df_gzreg__df_gzinf__df_gzf__df_mcn__df_mvar__df_mty__df_mtc__df_mmax__df_mvt__df_mrex__df_mex__df_mdv__df_mvrs__df_mrsub : ∀ x0 : ο . (wceq cgze (co (cgol (co (co c2o c0 cgoe) (co c2o c1o cgoe) cgob) c2o) (co c0 c1o cgoq) cgoi)wceq cgzr (cmpt (λ x1 . cfv com cfmla) (λ x1 . co (cgol (cgox (cgol (co (cgol (cv x1) c1o) (co c2o c1o cgoq) cgoi) c2o) c1o) c3o) (cgol (cgol (co (co c2o c1o cgoe) (cgox (co (co c3o c0 cgoe) (cgol (cv x1) c1o) cgoa) c3o) cgob) c2o) c1o) cgoi))wceq cgzp (cgox (cgol (co (cgol (co (co c1o c2o cgoe) (co c1o c0 cgoe) cgob) c1o) (co c2o c1o cgoe) cgoi) c2o) c1o)wceq cgzu (cgox (cgol (co (cgox (co (co c2o c1o cgoe) (co c1o c0 cgoe) cgoa) c1o) (co c2o c1o cgoe) cgoi) c2o) c1o)wceq cgzg (co (cgox (co c1o c0 cgoe) c1o) (cgox (co (co c1o c0 cgoe) (cgol (co (co c2o c1o cgoe) (cgon (co c2o c0 cgoe)) cgoi) c2o) cgoa) c1o) cgoi)wceq cgzi (cgox (co (co c0 c1o cgoe) (cgol (co (co c2o c1o cgoe) (cgox (co (co c2o c0 cgoe) (co c0 c1o cgoe) cgoa) c0) cgoi) c2o) cgoa) c1o)wceq cgzf (cab (λ x1 . w3a (w3a (wtr (cv x1)) (wbr (cv x1) cgze cprv) (wbr (cv x1) cgzp cprv)) (w3a (wbr (cv x1) cgzu cprv) (wbr (cv x1) cgzg cprv) (wbr (cv x1) cgzi cprv)) (wral (λ x2 . wbr (cv x1) (cfv (cv x2) cgzr) cprv) (λ x2 . cfv com cfmla))))wceq cmcn (cslot c1)wceq cmvar (cslot c2)wceq cmty (cslot c3)wceq cmtc (cslot c4)wceq cmax (cslot c5)wceq cmvt (cmpt (λ x1 . cvv) (λ x1 . crn (cfv (cv x1) cmty)))wceq cmrex (cmpt (λ x1 . cvv) (λ x1 . cword (cun (cfv (cv x1) cmcn) (cfv (cv x1) cmvar))))wceq cmex (cmpt (λ x1 . cvv) (λ x1 . cxp (cfv (cv x1) cmtc) (cfv (cv x1) cmrex)))wceq cmdv (cmpt (λ x1 . cvv) (λ x1 . cdif (cxp (cfv (cv x1) cmvar) (cfv (cv x1) cmvar)) cid))wceq cmvrs (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) cmex) (λ x2 . cin (crn (cfv (cv x2) c2nd)) (cfv (cv x1) cmvar))))wceq cmrsub (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . co (cfv (cv x1) cmrex) (cfv (cv x1) cmvar) cpm) (λ x2 . cmpt (λ x3 . cfv (cv x1) cmrex) (λ x3 . co (cfv (cun (cfv (cv x1) cmcn) (cfv (cv x1) cmvar)) cfrmd) (ccom (cmpt (λ x4 . cun (cfv (cv x1) cmcn) (cfv (cv x1) cmvar)) (λ x4 . cif (wcel (cv x4) (cdm (cv x2))) (cfv (cv x4) (cv x2)) (cs1 (cv x4)))) (cv x3)) cgsu))))x0)x0
Theorem df_gzext : wceq cgze (co (cgol (co (co c2o c0 cgoe) (co c2o c1o cgoe) cgob) c2o) (co c0 c1o cgoq) cgoi) (proof)
Theorem df_gzrep : wceq cgzr (cmpt (λ x0 . cfv com cfmla) (λ x0 . co (cgol (cgox (cgol (co (cgol (cv x0) c1o) (co c2o c1o cgoq) cgoi) c2o) c1o) c3o) (cgol (cgol (co (co c2o c1o cgoe) (cgox (co (co c3o c0 cgoe) (cgol (cv x0) c1o) cgoa) c3o) cgob) c2o) c1o) cgoi)) (proof)
Theorem df_gzpow : wceq cgzp (cgox (cgol (co (cgol (co (co c1o c2o cgoe) (co c1o c0 cgoe) cgob) c1o) (co c2o c1o cgoe) cgoi) c2o) c1o) (proof)
Theorem df_gzun : wceq cgzu (cgox (cgol (co (cgox (co (co c2o c1o cgoe) (co c1o c0 cgoe) cgoa) c1o) (co c2o c1o cgoe) cgoi) c2o) c1o) (proof)
Theorem df_gzreg : wceq cgzg (co (cgox (co c1o c0 cgoe) c1o) (cgox (co (co c1o c0 cgoe) (cgol (co (co c2o c1o cgoe) (cgon (co c2o c0 cgoe)) cgoi) c2o) cgoa) c1o) cgoi) (proof)
Theorem df_gzinf : wceq cgzi (cgox (co (co c0 c1o cgoe) (cgol (co (co c2o c1o cgoe) (cgox (co (co c2o c0 cgoe) (co c0 c1o cgoe) cgoa) c0) cgoi) c2o) cgoa) c1o) (proof)
Theorem df_gzf : wceq cgzf (cab (λ x0 . w3a (w3a (wtr (cv x0)) (wbr (cv x0) cgze cprv) (wbr (cv x0) cgzp cprv)) (w3a (wbr (cv x0) cgzu cprv) (wbr (cv x0) cgzg cprv) (wbr (cv x0) cgzi cprv)) (wral (λ x1 . wbr (cv x0) (cfv (cv x1) cgzr) cprv) (λ x1 . cfv com cfmla)))) (proof)
Theorem df_mcn : wceq cmcn (cslot c1) (proof)
Theorem df_mvar : wceq cmvar (cslot c2) (proof)
Theorem df_mty : wceq cmty (cslot c3) (proof)
Theorem df_mtc : wceq cmtc (cslot c4) (proof)
Theorem df_mmax : wceq cmax (cslot c5) (proof)
Theorem df_mvt : wceq cmvt (cmpt (λ x0 . cvv) (λ x0 . crn (cfv (cv x0) cmty))) (proof)
Theorem df_mrex : wceq cmrex (cmpt (λ x0 . cvv) (λ x0 . cword (cun (cfv (cv x0) cmcn) (cfv (cv x0) cmvar)))) (proof)
Theorem df_mex : wceq cmex (cmpt (λ x0 . cvv) (λ x0 . cxp (cfv (cv x0) cmtc) (cfv (cv x0) cmrex))) (proof)
Theorem df_mdv : wceq cmdv (cmpt (λ x0 . cvv) (λ x0 . cdif (cxp (cfv (cv x0) cmvar) (cfv (cv x0) cmvar)) cid)) (proof)
Theorem df_mvrs : wceq cmvrs (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) cmex) (λ x1 . cin (crn (cfv (cv x1) c2nd)) (cfv (cv x0) cmvar)))) (proof)
Theorem df_mrsub : wceq cmrsub (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . co (cfv (cv x0) cmrex) (cfv (cv x0) cmvar) cpm) (λ x1 . cmpt (λ x2 . cfv (cv x0) cmrex) (λ x2 . co (cfv (cun (cfv (cv x0) cmcn) (cfv (cv x0) cmvar)) cfrmd) (ccom (cmpt (λ x3 . cun (cfv (cv x0) cmcn) (cfv (cv x0) cmvar)) (λ x3 . cif (wcel (cv x3) (cdm (cv x1))) (cfv (cv x3) (cv x1)) (cs1 (cv x3)))) (cv x2)) cgsu)))) (proof)