∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ο . (explicit_Ring_with_id x0 x1 x2 x3 x4 ⟶ (∀ x6 . prim1 x6 x0 ⟶ ∀ x7 . prim1 x7 x0 ⟶ prim1 (x3 x6 x7) x0) ⟶ (∀ x6 . prim1 x6 x0 ⟶ ∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ x3 x6 (x3 x7 x8) = x3 (x3 x6 x7) x8) ⟶ (∀ x6 . prim1 x6 x0 ⟶ ∀ x7 . prim1 x7 x0 ⟶ x3 x6 x7 = x3 x7 x6) ⟶ prim1 x1 x0 ⟶ (∀ x6 . prim1 x6 x0 ⟶ x3 x1 x6 = x6) ⟶ (∀ x6 . prim1 x6 x0 ⟶ ∀ x7 : ο . (∀ x8 . and (prim1 x8 x0) (x3 x6 x8 = x1) ⟶ x7) ⟶ x7) ⟶ (∀ x6 . prim1 x6 x0 ⟶ ∀ x7 . prim1 x7 x0 ⟶ prim1 (x4 x6 x7) x0) ⟶ (∀ x6 . prim1 x6 x0 ⟶ ∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ x4 x6 (x4 x7 x8) = x4 (x4 x6 x7) x8) ⟶ prim1 x2 x0 ⟶ (x2 = x1 ⟶ ∀ x6 : ο . x6) ⟶ (∀ x6 . prim1 x6 x0 ⟶ x4 x2 x6 = x6) ⟶ (∀ x6 . prim1 x6 x0 ⟶ x4 x6 x2 = x6) ⟶ (∀ x6 . prim1 x6 x0 ⟶ ∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ x4 x6 (x3 x7 x8) = x3 (x4 x6 x7) (x4 x6 x8)) ⟶ (∀ x6 . prim1 x6 x0 ⟶ ∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ x4 (x3 x6 x7) x8 = x3 (x4 x6 x8) (x4 x7 x8)) ⟶ x5) ⟶ explicit_Ring_with_id x0 x1 x2 x3 x4 ⟶ x5 |
|