∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ο . (explicit_Ring x0 x1 x2 x3 ⟶ (∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ prim1 (x2 x5 x6) x0) ⟶ (∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ ∀ x7 . prim1 x7 x0 ⟶ x2 x5 (x2 x6 x7) = x2 (x2 x5 x6) x7) ⟶ (∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ x2 x5 x6 = x2 x6 x5) ⟶ prim1 x1 x0 ⟶ (∀ x5 . prim1 x5 x0 ⟶ x2 x1 x5 = x5) ⟶ (∀ x5 . prim1 x5 x0 ⟶ ∀ x6 : ο . (∀ x7 . and (prim1 x7 x0) (x2 x5 x7 = x1) ⟶ x6) ⟶ x6) ⟶ (∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ prim1 (x3 x5 x6) x0) ⟶ (∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ ∀ x7 . prim1 x7 x0 ⟶ x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7) ⟶ (∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ ∀ x7 . prim1 x7 x0 ⟶ x3 x5 (x2 x6 x7) = x2 (x3 x5 x6) (x3 x5 x7)) ⟶ (∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ ∀ x7 . prim1 x7 x0 ⟶ x3 (x2 x5 x6) x7 = x2 (x3 x5 x7) (x3 x6 x7)) ⟶ x4) ⟶ explicit_Ring x0 x1 x2 x3 ⟶ x4 |
|