∀ x0 . ∀ x1 : ι → ι . {x2 ∈ x0|∀ x3 . x3 ∈ prim4 x0 ⟶ x1 x3 ⊆ x3 ⟶ x2 ∈ x3} ∈ prim4 x0 ⟶ x1 {x2 ∈ x0|∀ x3 . x3 ∈ prim4 x0 ⟶ x1 x3 ⊆ x3 ⟶ x2 ∈ x3} ∈ prim4 x0 ⟶ (∀ x2 . x2 ∈ prim4 x0 ⟶ x1 x2 ⊆ x2 ⟶ {x3 ∈ x0|∀ x4 . x4 ∈ prim4 x0 ⟶ x1 x4 ⊆ x4 ⟶ x3 ∈ x4} ⊆ x2) ⟶ x1 {x2 ∈ x0|∀ x3 . x3 ∈ prim4 x0 ⟶ x1 x3 ⊆ x3 ⟶ x2 ∈ x3} ⊆ {x2 ∈ x0|∀ x3 . x3 ∈ prim4 x0 ⟶ x1 x3 ⊆ x3 ⟶ x2 ∈ x3} ⟶ x1 (x1 {x2 ∈ x0|∀ x3 . x3 ∈ prim4 x0 ⟶ x1 x3 ⊆ x3 ⟶ x2 ∈ x3}) ⊆ x1 {x2 ∈ x0|∀ x3 . x3 ∈ prim4 x0 ⟶ x1 x3 ⊆ x3 ⟶ x2 ∈ x3} ⟶ ∀ x2 : ο . (∀ x3 . and (x3 ∈ prim4 x0) (x1 x3 = x3) ⟶ x2) ⟶ x2 |
|
|
|
|
|
|
|
|
|
|