Search for blocks/addresses/...

Proofgold Address

address
PUK1vUxFxT7RHj576qANEznVfuY6cxdYCa1
total
0
mg
-
conjpub
-
current assets
7446c../88e61.. bday: 48176 doc published by PrGM6..
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param SingSing : ιι
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Theorem 6cd03.. : ∀ x0 x1 . x1x0Sing x1x0
...

Param UPairUPair : ιιι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known UPairEUPairE : ∀ x0 x1 x2 . x0UPair x1 x2or (x0 = x1) (x0 = x2)
Theorem f7dd2.. : ∀ x0 x1 . x1x0∀ x2 . x2x0UPair x1 x2x0
...

Param binunionbinunion : ιιι
Definition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)
Known binunion_Subq_minbinunion_Subq_min : ∀ x0 x1 x2 . x0x2x1x2binunion x0 x1x2
Theorem 6219b.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0SetAdjoin (UPair x1 x2) x3x0
...

Theorem c88f0.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4x0
...

Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known SingISingI : ∀ x0 . x0Sing x0
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Theorem 65822.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . (∀ x3 . x3x1∀ x4 . x4x1(x3 = x4∀ x5 : ο . x5)x0 x3 x4)(∀ x3 . x3x1x0 x3 x2)(∀ x3 . x3binunion x1 (Sing x2)∀ x4 . x4binunion x1 (Sing x2)x0 x3 x4x0 x4 x3)∀ x3 . x3binunion x1 (Sing x2)∀ x4 . x4binunion x1 (Sing x2)(x3 = x4∀ x5 : ο . x5)x0 x3 x4
...

Known UPairI1UPairI1 : ∀ x0 x1 . x0UPair x0 x1
Known UPairI2UPairI2 : ∀ x0 x1 . x1UPair x0 x1
Theorem c7e9c.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 x3 . x0 x1 x2x0 x1 x3x0 x2 x3(∀ x4 . x4SetAdjoin (UPair x1 x2) x3∀ x5 . x5SetAdjoin (UPair x1 x2) x3x0 x4 x5x0 x5 x4)∀ x4 . x4SetAdjoin (UPair x1 x2) x3∀ x5 . x5SetAdjoin (UPair x1 x2) x3(x4 = x5∀ x6 : ο . x6)x0 x4 x5
...

Known aa241.. : ∀ x0 x1 x2 . ∀ x3 : ι → ο . x3 x0x3 x1x3 x2∀ x4 . x4SetAdjoin (UPair x0 x1) x2x3 x4
Theorem 58c12.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 x3 x4 . x0 x1 x2x0 x1 x3x0 x1 x4x0 x2 x3x0 x2 x4x0 x3 x4(∀ x5 . x5SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4∀ x6 . x6SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4x0 x5 x6x0 x6 x5)∀ x5 . x5SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4∀ x6 . x6SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4(x5 = x6∀ x7 : ο . x7)x0 x5 x6
...

Definition notnot := λ x0 : ο . x0False
Known 9c595.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . (x0 x6 x10x0 x1 x10x0 x6 x9x0 x1 x9False)(x0 x1 x11x0 x1 x10x0 x1 x9False)(x0 x2 x11x0 x2 x10x0 x2 x9False)(x0 x4 x11x0 x4 x10x0 x4 x9False)(x0 x1 x12x0 x1 x10x0 x1 x9False)(x0 x6 x13x0 x1 x13x0 x6 x9x0 x1 x9False)(x0 x2 x13x0 x2 x11x0 x2 x9False)(x0 x4 x13x0 x4 x11x0 x4 x9False)(x0 x4 x14x0 x3 x14x0 x4 x12x0 x3 x12False)(x0 x2 x14x0 x2 x12x0 x2 x9False)(x0 x4 x14x0 x4 x12x0 x4 x9False)(x0 x4 x14x0 x3 x14x0 x4 x13x0 x3 x13False)(x0 x1 x14x0 x1 x13x0 x1 x9False)(x0 x6 x15x0 x1 x15x0 x6 x10x0 x1 x10False)(x0 x4 x15x0 x3 x15x0 x4 x11x0 x3 x11False)(x0 x5 x15x0 x2 x15x0 x5 x11x0 x2 x11False)(x0 x2 x15x0 x2 x11x0 x2 x10False)(x0 x3 x15x0 x3 x11x0 x3 x10False)(x0 x4 x15x0 x4 x11x0 x4 x10False)(x0 x5 x15x0 x2 x15x0 x5 x12x0 x2 x12False)(x0 x6 x15x0 x1 x15x0 x6 x13x0 x1 x13False)(x0 x2 x15x0 x2 x13x0 x2 x11False)(x0 x3 x15x0 x3 x13x0 x3 x11False)(x0 x4 x15x0 x4 x13x0 x4 x11False)(x0 x5 x15x0 x2 x15x0 x5 x14x0 x2 x14False)(x0 x2 x15x0 x2 x14x0 x2 x12False)(x0 x3 x15x0 x3 x14x0 x3 x12False)(x0 x4 x15x0 x4 x14x0 x4 x12False)(not (x0 x3 x9)not (x0 x2 x9)not (x0 x1 x9)False)(not (x0 x3 x12)not (x0 x2 x12)not (x0 x1 x12)False)(not (x0 x4 x12)not (x0 x2 x12)not (x0 x1 x12)False)(not (x0 x2 x12)not (x0 x1 x12)not (x0 x2 x11)not (x0 x1 x11)False)(not (x0 x3 x12)not (x0 x1 x12)not (x0 x3 x11)not (x0 x1 x11)False)(not (x0 x4 x12)not (x0 x1 x12)not (x0 x4 x11)not (x0 x1 x11)False)(not (x0 x5 x12)not (x0 x1 x12)not (x0 x5 x11)not (x0 x1 x11)False)(not (x0 x3 x13)not (x0 x2 x13)not (x0 x1 x13)False)(not (x0 x4 x13)not (x0 x2 x13)not (x0 x1 x13)False)(not (x0 x3 x13)not (x0 x2 x13)not (x0 x3 x10)not (x0 x2 x10)False)(not (x0 x4 x13)not (x0 x2 x13)not (x0 x4 x10)not (x0 x2 x10)False)(not (x0 x6 x13)not (x0 x2 x13)not (x0 x6 x10)not (x0 x2 x10)False)(not (x0 x2 x13)not (x0 x1 x13)not (x0 x2 x12)not (x0 x1 x12)False)(not (x0 x3 x14)not (x0 x2 x14)not (x0 x1 x14)False)(not (x0 x4 x14)not (x0 x2 x14)not (x0 x1 x14)False)(not (x0 x2 x14)not (x0 x1 x14)not (x0 x2 x11)not (x0 x1 x11)False)(not (x0 x3 x14)not (x0 x1 x14)not (x0 x3 x11)not (x0 x1 x11)False)(not (x0 x4 x14)not (x0 x1 x14)not (x0 x4 x11)not (x0 x1 x11)False)(not (x0 x5 x14)not (x0 x1 x14)not (x0 x5 x11)not (x0 x1 x11)False)(not (x0 x4 x15)not (x0 x2 x15)not (x0 x1 x15)False)(not (x0 x5 x15)not (x0 x3 x15)not (x0 x1 x15)False)(not (x0 x3 x15)not (x0 x2 x15)not (x0 x3 x9)not (x0 x2 x9)False)(not (x0 x6 x15)not (x0 x4 x15)not (x0 x6 x9)not (x0 x4 x9)False)(x0 x1 x11not (x0 x1 x10)False)(x0 x1 x12not (x0 x1 x10)False)(x0 x1 x13not (x0 x1 x10)False)(x0 x2 x9not (x0 x1 x9)False)(x0 x3 x9not (x0 x2 x9)False)(not (x0 x1 x11)not (x0 x1 x12)x0 x1 x14not (x0 x1 x13)False)(x0 x1 x9x0 x1 x15x0 x3 x15not (x0 x2 x9)False)False
Definition 2f869.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)not (x0 x1 x2)not (x0 x1 x3)not (x0 x2 x3)not (x0 x1 x4)not (x0 x2 x4)x0 x3 x4x5)x5
Definition 87c36.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (2f869.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)x0 x2 x5not (x0 x3 x5)x0 x4 x5x6)x6
Definition f201d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (87c36.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6not (x0 x2 x6)x0 x3 x6not (x0 x4 x6)x0 x5 x6x7)x7
Definition 2452c.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f201d.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7not (x0 x3 x7)x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition e643b.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (2452c.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)x0 x1 x8x0 x2 x8x0 x3 x8not (x0 x4 x8)not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition 6648a.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (87c36.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6x0 x3 x6not (x0 x4 x6)not (x0 x5 x6)x7)x7
Definition c9184.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (6648a.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)not (x0 x3 x7)not (x0 x4 x7)not (x0 x5 x7)not (x0 x6 x7)x8)x8
Param atleastpatleastp : ιιο
Definition cdfa5.. := λ x0 x1 . λ x2 : ι → ι → ο . ∀ x3 . x3x1atleastp x0 x3not (∀ x4 . x4x3∀ x5 . x5x3(x4 = x5∀ x6 : ο . x6)x2 x4 x5)
Param u4 : ι
Definition 86706.. := cdfa5.. u4
Definition 35fb6.. := λ x0 . λ x1 : ι → ι → ο . 86706.. x0 (λ x2 x3 . not (x1 x2 x3))
Param equipequip : ιιο
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known 7204a.. : ∀ x0 x1 x2 x3 . (x0 = x1∀ x4 : ο . x4)(x0 = x2∀ x4 : ο . x4)(x1 = x2∀ x4 : ο . x4)(x0 = x3∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)equip u4 (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3)
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Theorem 38317.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1∀ x15 . x15x1∀ x16 . x16x1(∀ x17 . x17x1∀ x18 . x18x1x0 x17 x18x0 x18 x17)(x2 = x10∀ x17 : ο . x17)(x3 = x10∀ x17 : ο . x17)(x4 = x10∀ x17 : ο . x17)(x5 = x10∀ x17 : ο . x17)(x6 = x10∀ x17 : ο . x17)(x7 = x10∀ x17 : ο . x17)(x8 = x10∀ x17 : ο . x17)(x9 = x10∀ x17 : ο . x17)(x2 = x11∀ x17 : ο . x17)(x3 = x11∀ x17 : ο . x17)(x4 = x11∀ x17 : ο . x17)(x5 = x11∀ x17 : ο . x17)(x6 = x11∀ x17 : ο . x17)(x7 = x11∀ x17 : ο . x17)(x8 = x11∀ x17 : ο . x17)(x9 = x11∀ x17 : ο . x17)(x2 = x12∀ x17 : ο . x17)(x3 = x12∀ x17 : ο . x17)(x4 = x12∀ x17 : ο . x17)(x5 = x12∀ x17 : ο . x17)(x6 = x12∀ x17 : ο . x17)(x7 = x12∀ x17 : ο . x17)(x8 = x12∀ x17 : ο . x17)(x9 = x12∀ x17 : ο . x17)(x2 = x13∀ x17 : ο . x17)(x3 = x13∀ x17 : ο . x17)(x4 = x13∀ x17 : ο . x17)(x5 = x13∀ x17 : ο . x17)(x6 = x13∀ x17 : ο . x17)(x7 = x13∀ x17 : ο . x17)(x8 = x13∀ x17 : ο . x17)(x9 = x13∀ x17 : ο . x17)(x2 = x14∀ x17 : ο . x17)(x3 = x14∀ x17 : ο . x17)(x4 = x14∀ x17 : ο . x17)(x5 = x14∀ x17 : ο . x17)(x6 = x14∀ x17 : ο . x17)(x7 = x14∀ x17 : ο . x17)(x8 = x14∀ x17 : ο . x17)(x9 = x14∀ x17 : ο . x17)(x2 = x15∀ x17 : ο . x17)(x3 = x15∀ x17 : ο . x17)(x4 = x15∀ x17 : ο . x17)(x5 = x15∀ x17 : ο . x17)(x6 = x15∀ x17 : ο . x17)(x7 = x15∀ x17 : ο . x17)(x8 = x15∀ x17 : ο . x17)(x9 = x15∀ x17 : ο . x17)(x2 = x16∀ x17 : ο . x17)(x3 = x16∀ x17 : ο . x17)(x4 = x16∀ x17 : ο . x17)(x5 = x16∀ x17 : ο . x17)(x6 = x16∀ x17 : ο . x17)(x7 = x16∀ x17 : ο . x17)(x8 = x16∀ x17 : ο . x17)(x9 = x16∀ x17 : ο . x17)e643b.. x0 x2 x3 x4 x5 x6 x7 x8 x9c9184.. (λ x17 x18 . not (x0 x17 x18)) x10 x11 x12 x13 x14 x15 x1686706.. x1 x035fb6.. x1 x0(x0 x2 x12not (x0 x2 x11)False)(x0 x2 x13not (x0 x2 x11)False)(x0 x2 x14not (x0 x2 x11)False)(x0 x3 x10not (x0 x2 x10)False)(x0 x4 x10not (x0 x3 x10)False)(not (x0 x2 x12)not (x0 x2 x13)x0 x2 x15not (x0 x2 x14)False)(x0 x2 x10x0 x2 x16x0 x4 x16not (x0 x3 x10)False)False
...


previous assets