current assets |
---|
f1d37../0166b.. bday: 20245 doc published by Pr4zB..Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3 ∈ x0 ⟶ x2 x3 ∈ x1) (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 = x2 x4 ⟶ x3 = x4)Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3 ⟶ x2) ⟶ x2Param ordsuccordsucc : ι → ιDefinition u1 := 1Definition u2 := ordsucc u1Definition u3 := ordsucc u2Definition u4 := ordsucc u3Definition u5 := ordsucc u4Definition u6 := ordsucc u5Known 3ed86.. : ∀ x0 . atleastp u5 x0 ⟶ ∀ x1 : ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ (x2 = x3 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x4 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x6 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x4 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x6 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x6 ⟶ ∀ x7 : ο . x7) ⟶ (x5 = x6 ⟶ ∀ x7 : ο . x7) ⟶ x1) ⟶ x1Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x2) ⟶ (x1 ⟶ x2) ⟶ x2Definition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseKnown xmxm : ∀ x0 : ο . or x0 (not x0)Known FalseEFalseE : False ⟶ ∀ x0 : ο . x0Param nat_pnat_p : ι → οKnown 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0 ⟶ not (atleastp (ordsucc x0) x0)Known nat_5nat_5 : nat_p 5Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1 ⟶ atleastp x1 x2 ⟶ atleastp x0 x2Param apap : ι → ι → ιParam lamSigma : ι → (ι → ι) → ιParam If_iIf_i : ο → ι → ι → ιParam invinv : ι → (ι → ι) → ι → ιKnown andIandI : ∀ x0 x1 : ο . x0 ⟶ x1 ⟶ and x0 x1Known surj_rinvsurj_rinv : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 : ο . (∀ x5 . and (x5 ∈ x0) (x2 x5 = x3) ⟶ x4) ⟶ x4) ⟶ ∀ x3 . x3 ∈ x1 ⟶ and (inv x0 x2 x3 ∈ x0) (x2 (inv x0 x2 x3) = x3)Known dnegdneg : ∀ x0 : ο . not (not x0) ⟶ x0Known In_0_5In_0_5 : 0 ∈ 5Known tuple_5_0_eqtuple_5_0_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 0 = x0Known In_1_5In_1_5 : 1 ∈ 5Known tuple_5_1_eqtuple_5_1_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 1 = x1Known In_2_5In_2_5 : 2 ∈ 5Known tuple_5_2_eqtuple_5_2_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 2 = x2Known In_3_5In_3_5 : 3 ∈ 5Known tuple_5_3_eqtuple_5_3_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 3 = x3Known In_4_5In_4_5 : 4 ∈ 5Known tuple_5_4_eqtuple_5_4_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 4 = x4Known nat_In_atleastp : ∀ x0 . nat_p x0 ⟶ ∀ x1 . x1 ∈ x0 ⟶ atleastp x1 x0Known nat_6nat_6 : nat_p 6Known In_5_6In_5_6 : u5 ∈ u6Theorem a753e.. : ∀ x0 . atleastp u6 x0 ⟶ ∀ x1 : ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ (x2 = x3 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x4 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x5 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x7 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x4 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x5 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x7 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x5 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x7 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x7 ⟶ ∀ x8 : ο . x8) ⟶ (x6 = x7 ⟶ ∀ x8 : ο . x8) ⟶ x1) ⟶ x1 (proof)Definition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Definition TwoRamseyProp_atleastp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5 ⟶ x3 x5 x4) ⟶ or (∀ x4 : ο . (∀ x5 . and (x5 ⊆ x2) (and (atleastp x0 x5) (∀ x6 . x6 ∈ x5 ⟶ ∀ x7 . x7 ∈ x5 ⟶ (x6 = x7 ⟶ ∀ x8 : ο . x8) ⟶ x3 x6 x7)) ⟶ x4) ⟶ x4) (∀ x4 : ο . (∀ x5 . and (x5 ⊆ x2) (and (atleastp x1 x5) (∀ x6 . x6 ∈ x5 ⟶ ∀ x7 . x7 ∈ x5 ⟶ (x6 = x7 ⟶ ∀ x8 : ο . x8) ⟶ not (x3 x6 x7))) ⟶ x4) ⟶ x4)Param setminussetminus : ι → ι → ιDefinition setprodsetprod := λ x0 x1 . lam x0 (λ x2 . x1)Param SingSing : ι → ιKnown tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0Known orIRorIR : ∀ x0 x1 : ο . x1 ⟶ or x0 x1Known orILorIL : ∀ x0 x1 : ο . x0 ⟶ or x0 x1Known ap1_Sigmaap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2 ∈ lam x0 x1 ⟶ ap x2 1 ∈ x1 (ap x2 0)Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2 ∈ setminus x0 x1 ⟶ x2 ∈ x0Known ap0_Sigmaap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2 ∈ lam x0 x1 ⟶ ap x2 0 ∈ x0Definition nInnIn := λ x0 x1 . not (x0 ∈ x1)Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2 ∈ setminus x0 x1 ⟶ nIn x2 x1Known SingISingI : ∀ x0 . x0 ∈ Sing x0Known tuple_Sigma_etatuple_Sigma_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2 ∈ lam x0 x1 ⟶ lam 2 (λ x4 . If_i (x4 = 0) (ap x2 0) (ap x2 1)) = x2Known d03c6.. : ∀ x0 . atleastp u4 x0 ⟶ ∀ x1 : ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ (x2 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x5 ⟶ ∀ x6 : ο . x6) ⟶ (x3 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x3 = x5 ⟶ ∀ x6 : ο . x6) ⟶ (x4 = x5 ⟶ ∀ x6 : ο . x6) ⟶ x1) ⟶ x1Theorem 3ebe9.. : ∀ x0 x1 : ι → ι → ι → ι → ο . (∀ x2 x3 x4 x5 . x0 x2 x3 x4 x5 ⟶ x0 x4 x5 x2 x3) ⟶ (∀ x2 . x2 ∈ u6 ⟶ ∀ x3 . x3 ∈ u6 ⟶ not (x0 x2 x3 x2 x3)) ⟶ (∀ x2 . x2 ∈ u6 ⟶ ∀ x3 . x3 ∈ u6 ⟶ x1 x2 x3 x2 x3) ⟶ (∀ x2 . x2 ∈ u6 ⟶ ∀ x3 . x3 ∈ u6 ⟶ ∀ x4 . x4 ∈ u6 ⟶ ∀ x5 . x5 ∈ u6 ⟶ (x2 = u5 ⟶ x3 = u5 ⟶ False) ⟶ (x4 = u5 ⟶ x5 = u5 ⟶ False) ⟶ x0 x2 x3 x4 x5 ⟶ x1 x2 x3 x4 x5) ⟶ (∀ x2 . x2 ∈ u6 ⟶ ∀ x3 . x3 ∈ u6 ⟶ ∀ x4 . x4 ∈ u6 ⟶ ∀ x5 . x5 ∈ u6 ⟶ (x2 = u5 ⟶ x3 = u5 ⟶ False) ⟶ (x4 = u5 ⟶ x5 = u5 ⟶ False) ⟶ (x2 = x4 ⟶ x3 = x5 ⟶ False) ⟶ x1 x2 x3 x4 x5 ⟶ x0 x2 x3 x4 x5) ⟶ (∀ x2 . x2 ∈ u6 ⟶ ∀ x3 . x3 ∈ u6 ⟶ ∀ x4 . x4 ∈ u6 ⟶ ∀ x5 . x5 ∈ u6 ⟶ ∀ x6 . x6 ∈ u6 ⟶ ∀ x7 . x7 ∈ u6 ⟶ ∀ x8 . x8 ∈ u6 ⟶ ∀ x9 . x9 ∈ u6 ⟶ x0 x2 x3 x4 x5 ⟶ x0 x2 x3 x6 x7 ⟶ x0 x2 x3 x8 x9 ⟶ x0 x4 x5 x6 x7 ⟶ x0 x4 x5 x8 x9 ⟶ x0 x6 x7 x8 x9 ⟶ False) ⟶ (∀ x2 . x2 ∈ u6 ⟶ ∀ x3 . x3 ∈ u6 ⟶ ∀ x4 . x4 ∈ u6 ⟶ ∀ x5 . x5 ∈ u6 ⟶ ∀ x6 . x6 ∈ u6 ⟶ ∀ x7 . x7 ∈ u6 ⟶ ∀ x8 . x8 ∈ u6 ⟶ ∀ x9 . x9 ∈ u6 ⟶ ∀ x10 . x10 ∈ u6 ⟶ ∀ x11 . x11 ∈ u6 ⟶ ∀ x12 . x12 ∈ u6 ⟶ ∀ x13 . x13 ∈ u6 ⟶ not (x1 x2 x3 x4 x5) ⟶ not (x1 x2 x3 x6 x7) ⟶ not (x1 x2 x3 x8 x9) ⟶ not (x1 x2 x3 x10 x11) ⟶ not (x1 x2 x3 x12 x13) ⟶ not (x1 x4 x5 x6 x7) ⟶ not (x1 x4 x5 x8 x9) ⟶ not (x1 x4 x5 x10 x11) ⟶ not (x1 x4 x5 x12 x13) ⟶ not (x1 x6 x7 x8 x9) ⟶ not (x1 x6 x7 x10 x11) ⟶ not (x1 x6 x7 x12 x13) ⟶ not (x1 x8 x9 x10 x11) ⟶ not (x1 x8 x9 x12 x13) ⟶ not (x1 x10 x11 x12 x13) ⟶ False) ⟶ not (TwoRamseyProp_atleastp u4 u6 (setminus (setprod u6 u6) (Sing (lam 2 (λ x2 . If_i (x2 = 0) u5 u5))))) (proof)Param TwoRamseyPropTwoRamseyProp : ι → ι → ι → οDefinition u7 := ordsucc u6Definition u8 := ordsucc u7Definition u9 := ordsucc u8Definition u10 := ordsucc u9Definition u11 := ordsucc u10Definition u12 := ordsucc u11Definition u13 := ordsucc u12Definition u14 := ordsucc u13Definition u15 := ordsucc u14Definition u16 := ordsucc u15Definition u17 := ordsucc u16Definition u18 := ordsucc u17Definition u19 := ordsucc u18Definition u20 := ordsucc u19Definition u21 := ordsucc u20Definition u22 := ordsucc u21Definition u23 := ordsucc u22Definition u24 := ordsucc u23Definition u25 := ordsucc u24Definition u26 := ordsucc u25Definition u27 := ordsucc u26Definition u28 := ordsucc u27Definition u29 := ordsucc u28Definition u30 := ordsucc u29Definition u31 := ordsucc u30Definition u32 := ordsucc u31Definition u33 := ordsucc u32Definition u34 := ordsucc u33Definition u35 := ordsucc u34Known TwoRamseyProp_atleastp_atleastp : ∀ x0 x1 x2 x3 x4 . TwoRamseyProp x0 x2 x4 ⟶ atleastp x1 x0 ⟶ atleastp x3 x2 ⟶ TwoRamseyProp_atleastp x1 x3 x4Known atleastp_ref : ∀ x0 . atleastp x0 x0Known 46dcf.. : ∀ x0 x1 x2 x3 . atleastp x2 x3 ⟶ TwoRamseyProp x0 x1 x2 ⟶ TwoRamseyProp x0 x1 x3Param equipequip : ι → ι → οKnown equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1 ⟶ atleastp x0 x1Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1 ⟶ equip x1 x0Known 903ea.. : equip (setminus (setprod u6 u6) (Sing (lam 2 (λ x0 . If_i (x0 = 0) u5 u5)))) u35Theorem df3e1.. : ∀ x0 x1 : ι → ι → ι → ι → ο . (∀ x2 x3 x4 x5 . x0 x2 x3 x4 x5 ⟶ x0 x4 x5 x2 x3) ⟶ (∀ x2 . x2 ∈ u6 ⟶ ∀ x3 . x3 ∈ u6 ⟶ not (x0 x2 x3 x2 x3)) ⟶ (∀ x2 . x2 ∈ u6 ⟶ ∀ x3 . x3 ∈ u6 ⟶ x1 x2 x3 x2 x3) ⟶ (∀ x2 . x2 ∈ u6 ⟶ ∀ x3 . x3 ∈ u6 ⟶ ∀ x4 . x4 ∈ u6 ⟶ ∀ x5 . x5 ∈ u6 ⟶ (x2 = u5 ⟶ x3 = u5 ⟶ False) ⟶ (x4 = u5 ⟶ x5 = u5 ⟶ False) ⟶ x0 x2 x3 x4 x5 ⟶ x1 x2 x3 x4 x5) ⟶ (∀ x2 . x2 ∈ u6 ⟶ ∀ x3 . x3 ∈ u6 ⟶ ∀ x4 . x4 ∈ u6 ⟶ ∀ x5 . x5 ∈ u6 ⟶ (x2 = u5 ⟶ x3 = u5 ⟶ False) ⟶ (x4 = u5 ⟶ x5 = u5 ⟶ False) ⟶ (x2 = x4 ⟶ x3 = x5 ⟶ False) ⟶ x1 x2 x3 x4 x5 ⟶ x0 x2 x3 x4 x5) ⟶ (∀ x2 . x2 ∈ u6 ⟶ ∀ x3 . x3 ∈ u6 ⟶ ∀ x4 . x4 ∈ u6 ⟶ ∀ x5 . x5 ∈ u6 ⟶ ∀ x6 . x6 ∈ u6 ⟶ ∀ x7 . x7 ∈ u6 ⟶ ∀ x8 . x8 ∈ u6 ⟶ ∀ x9 . x9 ∈ u6 ⟶ x0 x2 x3 x4 x5 ⟶ x0 x2 x3 x6 x7 ⟶ x0 x2 x3 x8 x9 ⟶ x0 x4 x5 x6 x7 ⟶ x0 x4 x5 x8 x9 ⟶ x0 x6 x7 x8 x9 ⟶ False) ⟶ (∀ x2 . x2 ∈ u6 ⟶ ∀ x3 . x3 ∈ u6 ⟶ ∀ x4 . x4 ∈ u6 ⟶ ∀ x5 . x5 ∈ u6 ⟶ ∀ x6 . x6 ∈ u6 ⟶ ∀ x7 . x7 ∈ u6 ⟶ ∀ x8 . x8 ∈ u6 ⟶ ∀ x9 . x9 ∈ u6 ⟶ ∀ x10 . x10 ∈ u6 ⟶ ∀ x11 . x11 ∈ u6 ⟶ ∀ x12 . x12 ∈ u6 ⟶ ∀ x13 . x13 ∈ u6 ⟶ not (x1 x2 x3 x4 x5) ⟶ not (x1 x2 x3 x6 x7) ⟶ not (x1 x2 x3 x8 x9) ⟶ not (x1 x2 x3 x10 x11) ⟶ not (x1 x2 x3 x12 x13) ⟶ not (x1 x4 x5 x6 x7) ⟶ not (x1 x4 x5 x8 x9) ⟶ not (x1 x4 x5 x10 x11) ⟶ not (x1 x4 x5 x12 x13) ⟶ not (x1 x6 x7 x8 x9) ⟶ not (x1 x6 x7 x10 x11) ⟶ not (x1 x6 x7 x12 x13) ⟶ not (x1 x8 x9 x10 x11) ⟶ not (x1 x8 x9 x12 x13) ⟶ not (x1 x10 x11 x12 x13) ⟶ False) ⟶ not (TwoRamseyProp 4 6 35) (proof)
|
|