Search for blocks/addresses/...
Proofgold Address
address
PUKaw7UZCFCnHNAE4jikXXmFABAR8nc5nGv
total
0
mg
-
conjpub
-
current assets
33d9f..
/
9f5bb..
bday:
36383
doc published by
PrCmT..
Known
df_cart__df_img__df_domain__df_range__df_cup__df_cap__df_restrict__df_succf__df_apply__df_funpart__df_fullfun__df_ub__df_lb__df_altop__df_altxp__df_ofs__df_transport__df_colinear
:
∀ x0 : ο .
(
wceq
ccart
(
cdif
(
cxp
(
cxp
cvv
cvv
)
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
cpprod
cep
cep
)
cvv
)
)
)
)
⟶
wceq
cimg
(
ccom
(
cimage
(
cres
(
ccom
c2nd
c1st
)
(
cres
c1st
(
cxp
cvv
cvv
)
)
)
)
ccart
)
⟶
wceq
cdomain
(
cimage
(
cres
c1st
(
cxp
cvv
cvv
)
)
)
⟶
wceq
crange
(
cimage
(
cres
c2nd
(
cxp
cvv
cvv
)
)
)
⟶
wceq
ccup
(
cdif
(
cxp
(
cxp
cvv
cvv
)
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
cun
(
ccom
(
ccnv
c1st
)
cep
)
(
ccom
(
ccnv
c2nd
)
cep
)
)
cvv
)
)
)
)
⟶
wceq
ccap
(
cdif
(
cxp
(
cxp
cvv
cvv
)
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
cin
(
ccom
(
ccnv
c1st
)
cep
)
(
ccom
(
ccnv
c2nd
)
cep
)
)
cvv
)
)
)
)
⟶
wceq
crestrict
(
ccom
ccap
(
ctxp
c1st
(
ccom
ccart
(
ctxp
c2nd
(
ccom
crange
c1st
)
)
)
)
)
⟶
wceq
csuccf
(
ccom
ccup
(
ctxp
cid
csingle
)
)
⟶
wceq
capply
(
ccom
(
ccom
cbigcup
cbigcup
)
(
ccom
(
cdif
(
cxp
cvv
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
cres
cep
csingles
)
cvv
)
)
)
)
(
ccom
(
ccom
csingle
cimg
)
(
cpprod
cid
csingle
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cfunpart
x1
)
(
cres
x1
(
cdm
(
cin
(
ccom
(
cimage
x1
)
csingle
)
(
cxp
cvv
csingles
)
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cfullfn
x1
)
(
cun
(
cfunpart
x1
)
(
cxp
(
cdif
cvv
(
cdm
(
cfunpart
x1
)
)
)
(
csn
c0
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cub
x1
)
(
cdif
(
cxp
cvv
cvv
)
(
ccom
(
cdif
cvv
x1
)
(
ccnv
cep
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
clb
x1
)
(
cub
(
ccnv
x1
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
caltop
x1
x2
)
(
cpr
(
csn
x1
)
(
cpr
x1
(
csn
x2
)
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
caltxp
x1
x2
)
(
cab
(
λ x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wceq
(
cv
x3
)
(
caltop
(
cv
x4
)
(
cv
x5
)
)
)
(
λ x5 .
x2
)
)
(
λ x4 .
x1
)
)
)
)
⟶
wceq
cofs
(
copab
(
λ x1 x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wrex
(
λ x6 .
wrex
(
λ x7 .
wrex
(
λ x8 .
wrex
(
λ x9 .
wrex
(
λ x10 .
wrex
(
λ x11 .
w3a
(
wceq
(
cv
x1
)
(
cop
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cop
(
cv
x6
)
(
cv
x7
)
)
)
)
(
wceq
(
cv
x2
)
(
cop
(
cop
(
cv
x8
)
(
cv
x9
)
)
(
cop
(
cv
x10
)
(
cv
x11
)
)
)
)
(
w3a
(
wa
(
wbr
(
cv
x5
)
(
cop
(
cv
x4
)
(
cv
x6
)
)
cbtwn
)
(
wbr
(
cv
x9
)
(
cop
(
cv
x8
)
(
cv
x10
)
)
cbtwn
)
)
(
wa
(
wbr
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cop
(
cv
x8
)
(
cv
x9
)
)
ccgr
)
(
wbr
(
cop
(
cv
x5
)
(
cv
x6
)
)
(
cop
(
cv
x9
)
(
cv
x10
)
)
ccgr
)
)
(
wa
(
wbr
(
cop
(
cv
x4
)
(
cv
x7
)
)
(
cop
(
cv
x8
)
(
cv
x11
)
)
ccgr
)
(
wbr
(
cop
(
cv
x5
)
(
cv
x7
)
)
(
cop
(
cv
x9
)
(
cv
x11
)
)
ccgr
)
)
)
)
(
λ x11 .
cfv
(
cv
x3
)
cee
)
)
(
λ x10 .
cfv
(
cv
x3
)
cee
)
)
(
λ x9 .
cfv
(
cv
x3
)
cee
)
)
(
λ x8 .
cfv
(
cv
x3
)
cee
)
)
(
λ x7 .
cfv
(
cv
x3
)
cee
)
)
(
λ x6 .
cfv
(
cv
x3
)
cee
)
)
(
λ x5 .
cfv
(
cv
x3
)
cee
)
)
(
λ x4 .
cfv
(
cv
x3
)
cee
)
)
(
λ x3 .
cn
)
)
)
⟶
wceq
ctransport
(
coprab
(
λ x1 x2 x3 .
wrex
(
λ x4 .
wa
(
w3a
(
wcel
(
cv
x1
)
(
cxp
(
cfv
(
cv
x4
)
cee
)
(
cfv
(
cv
x4
)
cee
)
)
)
(
wcel
(
cv
x2
)
(
cxp
(
cfv
(
cv
x4
)
cee
)
(
cfv
(
cv
x4
)
cee
)
)
)
(
wne
(
cfv
(
cv
x2
)
c1st
)
(
cfv
(
cv
x2
)
c2nd
)
)
)
(
wceq
(
cv
x3
)
(
crio
(
λ x5 .
wa
(
wbr
(
cfv
(
cv
x2
)
c2nd
)
(
cop
(
cfv
(
cv
x2
)
c1st
)
(
cv
x5
)
)
cbtwn
)
(
wbr
(
cop
(
cfv
(
cv
x2
)
c2nd
)
(
cv
x5
)
)
(
cv
x1
)
ccgr
)
)
(
λ x5 .
cfv
(
cv
x4
)
cee
)
)
)
)
(
λ x4 .
cn
)
)
)
⟶
wceq
ccolin
(
ccnv
(
coprab
(
λ x1 x2 x3 .
wrex
(
λ x4 .
wa
(
w3a
(
wcel
(
cv
x3
)
(
cfv
(
cv
x4
)
cee
)
)
(
wcel
(
cv
x1
)
(
cfv
(
cv
x4
)
cee
)
)
(
wcel
(
cv
x2
)
(
cfv
(
cv
x4
)
cee
)
)
)
(
w3o
(
wbr
(
cv
x3
)
(
cop
(
cv
x1
)
(
cv
x2
)
)
cbtwn
)
(
wbr
(
cv
x1
)
(
cop
(
cv
x2
)
(
cv
x3
)
)
cbtwn
)
(
wbr
(
cv
x2
)
(
cop
(
cv
x3
)
(
cv
x1
)
)
cbtwn
)
)
)
(
λ x4 .
cn
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_cart
:
wceq
ccart
(
cdif
(
cxp
(
cxp
cvv
cvv
)
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
cpprod
cep
cep
)
cvv
)
)
)
)
(proof)
Theorem
df_img
:
wceq
cimg
(
ccom
(
cimage
(
cres
(
ccom
c2nd
c1st
)
(
cres
c1st
(
cxp
cvv
cvv
)
)
)
)
ccart
)
(proof)
Theorem
df_domain
:
wceq
cdomain
(
cimage
(
cres
c1st
(
cxp
cvv
cvv
)
)
)
(proof)
Theorem
df_range
:
wceq
crange
(
cimage
(
cres
c2nd
(
cxp
cvv
cvv
)
)
)
(proof)
Theorem
df_cup
:
wceq
ccup
(
cdif
(
cxp
(
cxp
cvv
cvv
)
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
cun
(
ccom
(
ccnv
c1st
)
cep
)
(
ccom
(
ccnv
c2nd
)
cep
)
)
cvv
)
)
)
)
(proof)
Theorem
df_cap
:
wceq
ccap
(
cdif
(
cxp
(
cxp
cvv
cvv
)
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
cin
(
ccom
(
ccnv
c1st
)
cep
)
(
ccom
(
ccnv
c2nd
)
cep
)
)
cvv
)
)
)
)
(proof)
Theorem
df_restrict
:
wceq
crestrict
(
ccom
ccap
(
ctxp
c1st
(
ccom
ccart
(
ctxp
c2nd
(
ccom
crange
c1st
)
)
)
)
)
(proof)
Theorem
df_succf
:
wceq
csuccf
(
ccom
ccup
(
ctxp
cid
csingle
)
)
(proof)
Theorem
df_apply
:
wceq
capply
(
ccom
(
ccom
cbigcup
cbigcup
)
(
ccom
(
cdif
(
cxp
cvv
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
cres
cep
csingles
)
cvv
)
)
)
)
(
ccom
(
ccom
csingle
cimg
)
(
cpprod
cid
csingle
)
)
)
)
(proof)
Theorem
df_funpart
:
∀ x0 :
ι → ο
.
wceq
(
cfunpart
x0
)
(
cres
x0
(
cdm
(
cin
(
ccom
(
cimage
x0
)
csingle
)
(
cxp
cvv
csingles
)
)
)
)
(proof)
Theorem
df_fullfun
:
∀ x0 :
ι → ο
.
wceq
(
cfullfn
x0
)
(
cun
(
cfunpart
x0
)
(
cxp
(
cdif
cvv
(
cdm
(
cfunpart
x0
)
)
)
(
csn
c0
)
)
)
(proof)
Theorem
df_ub
:
∀ x0 :
ι → ο
.
wceq
(
cub
x0
)
(
cdif
(
cxp
cvv
cvv
)
(
ccom
(
cdif
cvv
x0
)
(
ccnv
cep
)
)
)
(proof)
Theorem
df_lb
:
∀ x0 :
ι → ο
.
wceq
(
clb
x0
)
(
cub
(
ccnv
x0
)
)
(proof)
Theorem
df_altop
:
∀ x0 x1 :
ι → ο
.
wceq
(
caltop
x0
x1
)
(
cpr
(
csn
x0
)
(
cpr
x0
(
csn
x1
)
)
)
(proof)
Theorem
df_altxp
:
∀ x0 x1 :
ι → ο
.
wceq
(
caltxp
x0
x1
)
(
cab
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wceq
(
cv
x2
)
(
caltop
(
cv
x3
)
(
cv
x4
)
)
)
(
λ x4 .
x1
)
)
(
λ x3 .
x0
)
)
)
(proof)
Theorem
df_ofs
:
wceq
cofs
(
copab
(
λ x0 x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wrex
(
λ x6 .
wrex
(
λ x7 .
wrex
(
λ x8 .
wrex
(
λ x9 .
wrex
(
λ x10 .
w3a
(
wceq
(
cv
x0
)
(
cop
(
cop
(
cv
x3
)
(
cv
x4
)
)
(
cop
(
cv
x5
)
(
cv
x6
)
)
)
)
(
wceq
(
cv
x1
)
(
cop
(
cop
(
cv
x7
)
(
cv
x8
)
)
(
cop
(
cv
x9
)
(
cv
x10
)
)
)
)
(
w3a
(
wa
(
wbr
(
cv
x4
)
(
cop
(
cv
x3
)
(
cv
x5
)
)
cbtwn
)
(
wbr
(
cv
x8
)
(
cop
(
cv
x7
)
(
cv
x9
)
)
cbtwn
)
)
(
wa
(
wbr
(
cop
(
cv
x3
)
(
cv
x4
)
)
(
cop
(
cv
x7
)
(
cv
x8
)
)
ccgr
)
(
wbr
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cop
(
cv
x8
)
(
cv
x9
)
)
ccgr
)
)
(
wa
(
wbr
(
cop
(
cv
x3
)
(
cv
x6
)
)
(
cop
(
cv
x7
)
(
cv
x10
)
)
ccgr
)
(
wbr
(
cop
(
cv
x4
)
(
cv
x6
)
)
(
cop
(
cv
x8
)
(
cv
x10
)
)
ccgr
)
)
)
)
(
λ x10 .
cfv
(
cv
x2
)
cee
)
)
(
λ x9 .
cfv
(
cv
x2
)
cee
)
)
(
λ x8 .
cfv
(
cv
x2
)
cee
)
)
(
λ x7 .
cfv
(
cv
x2
)
cee
)
)
(
λ x6 .
cfv
(
cv
x2
)
cee
)
)
(
λ x5 .
cfv
(
cv
x2
)
cee
)
)
(
λ x4 .
cfv
(
cv
x2
)
cee
)
)
(
λ x3 .
cfv
(
cv
x2
)
cee
)
)
(
λ x2 .
cn
)
)
)
(proof)
Theorem
df_transport
:
wceq
ctransport
(
coprab
(
λ x0 x1 x2 .
wrex
(
λ x3 .
wa
(
w3a
(
wcel
(
cv
x0
)
(
cxp
(
cfv
(
cv
x3
)
cee
)
(
cfv
(
cv
x3
)
cee
)
)
)
(
wcel
(
cv
x1
)
(
cxp
(
cfv
(
cv
x3
)
cee
)
(
cfv
(
cv
x3
)
cee
)
)
)
(
wne
(
cfv
(
cv
x1
)
c1st
)
(
cfv
(
cv
x1
)
c2nd
)
)
)
(
wceq
(
cv
x2
)
(
crio
(
λ x4 .
wa
(
wbr
(
cfv
(
cv
x1
)
c2nd
)
(
cop
(
cfv
(
cv
x1
)
c1st
)
(
cv
x4
)
)
cbtwn
)
(
wbr
(
cop
(
cfv
(
cv
x1
)
c2nd
)
(
cv
x4
)
)
(
cv
x0
)
ccgr
)
)
(
λ x4 .
cfv
(
cv
x3
)
cee
)
)
)
)
(
λ x3 .
cn
)
)
)
(proof)
Theorem
df_colinear
:
wceq
ccolin
(
ccnv
(
coprab
(
λ x0 x1 x2 .
wrex
(
λ x3 .
wa
(
w3a
(
wcel
(
cv
x2
)
(
cfv
(
cv
x3
)
cee
)
)
(
wcel
(
cv
x0
)
(
cfv
(
cv
x3
)
cee
)
)
(
wcel
(
cv
x1
)
(
cfv
(
cv
x3
)
cee
)
)
)
(
w3o
(
wbr
(
cv
x2
)
(
cop
(
cv
x0
)
(
cv
x1
)
)
cbtwn
)
(
wbr
(
cv
x0
)
(
cop
(
cv
x1
)
(
cv
x2
)
)
cbtwn
)
(
wbr
(
cv
x1
)
(
cop
(
cv
x2
)
(
cv
x0
)
)
cbtwn
)
)
)
(
λ x3 .
cn
)
)
)
)
(proof)
previous assets