Search for blocks/addresses/...

Proofgold Address

address
PUL9u8WPQdim8L3m6iDs1jtXNHtRBKCcy7r
total
0
mg
-
conjpub
-
current assets
9638e../50585.. bday: 4970 doc published by Pr6Pc..
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Definition ordinalordinal := λ x0 . and (TransSet x0) (∀ x1 . x1x0TransSet x1)
Param add_SNoadd_SNo : ιιι
Param SNoSNo : ιο
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known add_SNo_ordinal_InLadd_SNo_ordinal_InL : ∀ x0 . ordinal x0∀ x1 . ordinal x1∀ x2 . x2x0add_SNo x2 x1add_SNo x0 x1
Known ordinal_SNoordinal_SNo : ∀ x0 . ordinal x0SNo x0
Known ordinal_Heredordinal_Hered : ∀ x0 . ordinal x0∀ x1 . x1x0ordinal x1
Theorem add_SNo_ordinal_InRadd_SNo_ordinal_InR : ∀ x0 . ordinal x0∀ x1 . ordinal x1∀ x2 . x2x1add_SNo x0 x2add_SNo x0 x1 (proof)
Param omegaomega : ι
Param add_natadd_nat : ιιι
Param nat_pnat_p : ιο
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Param ordsuccordsucc : ιι
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0
Known add_SNo_ordinal_SRadd_SNo_ordinal_SR : ∀ x0 . ordinal x0∀ x1 . ordinal x1add_SNo x0 (ordsucc x1) = ordsucc (add_SNo x0 x1)
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Theorem add_nat_add_SNoadd_nat_add_SNo : ∀ x0 . x0omega∀ x1 . x1omegaadd_nat x0 x1 = add_SNo x0 x1 (proof)
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known add_nat_padd_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (add_nat x0 x1)
Theorem add_SNo_In_omegaadd_SNo_In_omega : ∀ x0 . x0omega∀ x1 . x1omegaadd_SNo x0 x1omega (proof)
Known add_SNo_cancel_Ladd_SNo_cancel_L : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 x1 = add_SNo x0 x2x1 = x2
Theorem add_SNo_cancel_Radd_SNo_cancel_R : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 x1 = add_SNo x2 x1x0 = x2 (proof)
Param SNoLevSNoLev : ιι
Param SNoS_SNoS_ : ιι
Known SNoLev_ind2SNoLev_ind2 : ∀ x0 : ι → ι → ο . (∀ x1 x2 . SNo x1SNo x2(∀ x3 . x3SNoS_ (SNoLev x1)x0 x3 x2)(∀ x3 . x3SNoS_ (SNoLev x2)x0 x1 x3)(∀ x3 . x3SNoS_ (SNoLev x1)∀ x4 . x4SNoS_ (SNoLev x2)x0 x3 x4)x0 x1 x2)∀ x1 x2 . SNo x1SNo x2x0 x1 x2
Param SNoCutSNoCut : ιιι
Param binunionbinunion : ιιι
Param SNoLSNoL : ιι
Param SNoRSNoR : ιι
Known add_SNo_eqadd_SNo_eq : ∀ x0 . SNo x0∀ x1 . SNo x1add_SNo x0 x1 = SNoCut (binunion {add_SNo x3 x1|x3 ∈ SNoL x0} (prim5 (SNoL x1) (add_SNo x0))) (binunion {add_SNo x3 x1|x3 ∈ SNoR x0} (prim5 (SNoR x1) (add_SNo x0)))
Param SNoCutPSNoCutP : ιιο
Param famunionfamunion : ι(ιι) → ι
Param SNoLtSNoLt : ιιο
Param SNoEq_SNoEq_ : ιιιο
Known SNoCutP_SNoCut_impredSNoCutP_SNoCut_impred : ∀ x0 x1 . SNoCutP x0 x1∀ x2 : ο . (SNo (SNoCut x0 x1)SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x3 . ordsucc (SNoLev x3))) (famunion x1 (λ x3 . ordsucc (SNoLev x3))))(∀ x3 . x3x0SNoLt x3 (SNoCut x0 x1))(∀ x3 . x3x1SNoLt (SNoCut x0 x1) x3)(∀ x3 . SNo x3(∀ x4 . x4x0SNoLt x4 x3)(∀ x4 . x4x1SNoLt x3 x4)and (SNoLev (SNoCut x0 x1)SNoLev x3) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x3))x2)x2
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known binunion_Subq_minbinunion_Subq_min : ∀ x0 x1 x2 . x0x2x1x2binunion x0 x1x2
Known famunionE_impredfamunionE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2famunion x0 x1∀ x3 : ο . (∀ x4 . x4x0x2x1 x4x3)x3
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known ordinal_In_Or_Subqordinal_In_Or_Subq : ∀ x0 x1 . ordinal x0ordinal x1or (x0x1) (x1x0)
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known SNoLev_ordinalSNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0)
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0x1x1x0False
Known ordinal_ordsuccordinal_ordsucc : ∀ x0 . ordinal x0ordinal (ordsucc x0)
Known TransSet_In_ordsucc_SubqTransSet_In_ordsucc_Subq : ∀ x0 x1 . TransSet x1x0ordsucc x1x0x1
Known ordinal_binunionordinal_binunion : ∀ x0 x1 . ordinal x0ordinal x1ordinal (binunion x0 x1)
Known ordinal_famunionordinal_famunion : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0ordinal (x1 x2))ordinal (famunion x0 x1)
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known SNoR_ESNoR_E : ∀ x0 . SNo x0∀ x1 . x1SNoR x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x2)x2
Known SNoR_SNoS_SNoR_SNoS_ : ∀ x0 . SNoR x0SNoS_ (SNoLev x0)
Known SNoL_ESNoL_E : ∀ x0 . SNo x0∀ x1 . x1SNoL x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x2)x2
Known SNoL_SNoS_SNoL_SNoS_ : ∀ x0 . SNoL x0SNoS_ (SNoLev x0)
Known add_SNo_SNoCutPadd_SNo_SNoCutP : ∀ x0 x1 . SNo x0SNo x1SNoCutP (binunion {add_SNo x2 x1|x2 ∈ SNoL x0} (prim5 (SNoL x1) (add_SNo x0))) (binunion {add_SNo x2 x1|x2 ∈ SNoR x0} (prim5 (SNoR x1) (add_SNo x0)))
Known add_SNo_ordinal_ordinaladd_SNo_ordinal_ordinal : ∀ x0 . ordinal x0∀ x1 . ordinal x1ordinal (add_SNo x0 x1)
Theorem add_SNo_Lev_bdadd_SNo_Lev_bd : ∀ x0 x1 . SNo x0SNo x1SNoLev (add_SNo x0 x1)add_SNo (SNoLev x0) (SNoLev x1) (proof)
Param SNo_SNo_ : ιιο
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Known omega_ordinalomega_ordinal : ordinal omega
Known SNoS_ISNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0
Known SNoLev_SNoLev_ : ∀ x0 . SNo x0SNo_ (SNoLev x0) x0
Theorem add_SNo_SNoS_omegaadd_SNo_SNoS_omega : ∀ x0 . x0SNoS_ omega∀ x1 . x1SNoS_ omegaadd_SNo x0 x1SNoS_ omega (proof)
Param minus_CSNominus_CSNo : ιι
Definition int_alt1int := binunion omega (prim5 omega minus_CSNo)
Param ReplSep2ReplSep2 : ι(ιι) → (ιιο) → CT2 ι
Param div_CSNodiv_CSNo : ιιι
Definition cab0d..rational := ReplSep2 int_alt1 (λ x0 . omega) (λ x0 x1 . x1 = 0∀ x2 : ο . x2) div_CSNo
Param nat_primrecnat_primrec : ι(ιιι) → ιι
Param If_iIf_i : οιιι
Param add_CSNoadd_CSNo : ιιι
Definition SumSum := λ x0 x1 . λ x2 : ι → ι . nat_primrec 0 (λ x3 x4 . If_i (x3x0) 0 (add_CSNo (x2 x3) x4)) (ordsucc x1)
Param mul_CSNomul_CSNo : ιιι
Definition ProdProd := λ x0 x1 . λ x2 : ι → ι . nat_primrec 1 (λ x3 x4 . If_i (x3x0) 1 (mul_CSNo (x2 x3) x4)) (ordsucc x1)

previous assets