Search for blocks/addresses/...

Proofgold Address

address
PUQvq9Kd4x1hksKKcMqahVA5LZygzn5XRe8
total
0
mg
-
conjpub
-
current assets
85795../2ce89.. bday: 28444 doc published by PrQUS..
Param ordsuccordsucc : ιι
Known ordsucc_inj_contraordsucc_inj_contra : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)ordsucc x0 = ordsucc x1∀ x2 : ο . x2
Known neq_0_2neq_0_2 : 0 = 2∀ x0 : ο . x0
Theorem neq_1_3neq_1_3 : 1 = 3∀ x0 : ο . x0 (proof)
Known neq_1_2neq_1_2 : 1 = 2∀ x0 : ο . x0
Theorem neq_2_3neq_2_3 : 2 = 3∀ x0 : ο . x0 (proof)
Theorem neq_2_4neq_2_4 : 2 = 4∀ x0 : ο . x0 (proof)
Theorem neq_3_4neq_3_4 : 3 = 4∀ x0 : ο . x0 (proof)
Param nat_primrecnat_primrec : ι(ιιι) → ιι
Param CD_mulCD_mul : ι(ιο) → (ιι) → (ιι) → (ιιι) → (ιιι) → ιιι
Definition CD_exp_natCD_exp_nat := λ x0 . λ x1 : ι → ο . λ x2 x3 : ι → ι . λ x4 x5 : ι → ι → ι . λ x6 . nat_primrec 1 (λ x7 . CD_mul x0 x1 x2 x3 x4 x5 x6)
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known nat_primrec_0nat_primrec_0 : ∀ x0 . ∀ x1 : ι → ι → ι . nat_primrec x0 x1 0 = x0
Theorem CD_exp_nat_0CD_exp_nat_0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . ∀ x6 . CD_exp_nat x0 x1 x2 x3 x4 x5 x6 0 = 1 (proof)
Param nat_pnat_p : ιο
Known nat_primrec_Snat_primrec_S : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . nat_p x2nat_primrec x0 x1 (ordsucc x2) = x1 x2 (nat_primrec x0 x1 x2)
Theorem CD_exp_nat_SCD_exp_nat_S : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . ∀ x6 x7 . nat_p x7CD_exp_nat x0 x1 x2 x3 x4 x5 x6 (ordsucc x7) = CD_mul x0 x1 x2 x3 x4 x5 x6 (CD_exp_nat x0 x1 x2 x3 x4 x5 x6 x7) (proof)
Param CD_carrCD_carr : ι(ιο) → ιο
Known nat_0nat_0 : nat_p 0
Known CD_mul_1RCD_mul_1R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0x1 1x2 0 = 0x3 0 = 0x3 1 = 1(∀ x6 . x1 x6x4 0 x6 = x6)(∀ x6 . x1 x6x4 x6 0 = x6)(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 1 = x6)∀ x6 . CD_carr x0 x1 x6CD_mul x0 x1 x2 x3 x4 x5 x6 1 = x6
Theorem CD_exp_nat_1CD_exp_nat_1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0x1 1x2 0 = 0x3 0 = 0x3 1 = 1(∀ x6 . x1 x6x4 0 x6 = x6)(∀ x6 . x1 x6x4 x6 0 = x6)(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 1 = x6)∀ x6 . CD_carr x0 x1 x6CD_exp_nat x0 x1 x2 x3 x4 x5 x6 1 = x6 (proof)
Known nat_1nat_1 : nat_p 1
Theorem CD_exp_nat_2CD_exp_nat_2 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0x1 1x2 0 = 0x3 0 = 0x3 1 = 1(∀ x6 . x1 x6x4 0 x6 = x6)(∀ x6 . x1 x6x4 x6 0 = x6)(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 1 = x6)∀ x6 . CD_carr x0 x1 x6CD_exp_nat x0 x1 x2 x3 x4 x5 x6 2 = CD_mul x0 x1 x2 x3 x4 x5 x6 x6 (proof)
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known CD_carr_0extCD_carr_0ext : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)x1 0∀ x2 . x1 x2CD_carr x0 x1 x2
Known CD_mul_CDCD_mul_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_carr x0 x1 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7)
Theorem CD_exp_nat_CDCD_exp_nat_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))x1 0x1 1∀ x6 . CD_carr x0 x1 x6∀ x7 . nat_p x7CD_carr x0 x1 (CD_exp_nat x0 x1 x2 x3 x4 x5 x6 x7) (proof)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Param SingSing : ιι
Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0x1x1x0False
Known In_0_1In_0_1 : 01
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known SingISingI : ∀ x0 . x0Sing x0
Known nat_transnat_trans : ∀ x0 . nat_p x0∀ x1 . x1x0x1x0
Theorem not_TransSet_Sing_tagnnot_TransSet_Sing_tagn : ∀ x0 . nat_p x01x0not (TransSet (Sing x0)) (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition ordinalordinal := λ x0 . and (TransSet x0) (∀ x1 . x1x0TransSet x1)
Theorem not_ordinal_Sing_tagnnot_ordinal_Sing_tagn : ∀ x0 . nat_p x01x0not (ordinal (Sing x0)) (proof)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Definition ExtendedSNoElt_ExtendedSNoElt_ := λ x0 x1 . ∀ x2 . x2prim3 x1or (ordinal x2) (∀ x3 : ο . (∀ x4 . and (x4x0) (x2 = Sing x4)x3)x3)
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem extension_SNoElt_monextension_SNoElt_mon : ∀ x0 x1 . x0x1∀ x2 . ExtendedSNoElt_ x0 x2ExtendedSNoElt_ x1 x2 (proof)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known Sing_injSing_inj : ∀ x0 x1 . Sing x0 = Sing x1x0 = x1
Known UnionIUnionI : ∀ x0 x1 x2 . x1x2x2x0x1prim3 x0
Theorem Sing_nat_fresh_extensionSing_nat_fresh_extension : ∀ x0 . nat_p x01x0∀ x1 . ExtendedSNoElt_ x0 x1∀ x2 . x2x1nIn (Sing x0) x2 (proof)
Param SNoSNo : ιο
Known UnionE_impredUnionE_impred : ∀ x0 x1 . x1prim3 x0∀ x2 : ο . (∀ x3 . x1x3x3x0x2)x2
Param binunionbinunion : ιιι
Definition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)
Definition SNoElts_SNoElts_ := λ x0 . binunion x0 {SetAdjoin x1 (Sing 1)|x1 ∈ x0}
Param exactly1of2exactly1of2 : οοο
Definition SNo_SNo_ := λ x0 x1 . and (x1SNoElts_ x0) (∀ x2 . x2x0exactly1of2 (SetAdjoin x2 (Sing 1)x1) (x2x1))
Param SNoLevSNoLev : ιι
Known SNoLev_SNoLev_ : ∀ x0 . SNo x0SNo_ (SNoLev x0) x0
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known ordinal_Heredordinal_Hered : ∀ x0 . ordinal x0∀ x1 . x1x0ordinal x1
Known SNoLev_ordinalSNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0)
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known In_1_2In_1_2 : 12
Theorem SNo_ExtendedSNoElt_2SNo_ExtendedSNoElt_2 : ∀ x0 . SNo x0ExtendedSNoElt_ 2 x0 (proof)
Known nat_2nat_2 : nat_p 2
Theorem complex_tag_freshcomplex_tag_fresh : ∀ x0 . SNo x0∀ x1 . x1x0nIn (Sing 2) x1 (proof)
Definition pair_tagpair_tag := λ x0 x1 x2 . binunion x1 {SetAdjoin x3 x0|x3 ∈ x2}
Definition SNo_pairSNo_pair := pair_tag (Sing 2)
Known pair_tag_0pair_tag_0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . pair_tag x0 x2 0 = x2
Theorem SNo_pair_0SNo_pair_0 : ∀ x0 . SNo_pair x0 0 = x0 (proof)
Known pair_tag_prop_1pair_tag_prop_1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 x4 x5 . x1 x2x1 x4pair_tag x0 x2 x3 = pair_tag x0 x4 x5x2 = x4
Theorem SNo_pair_prop_1SNo_pair_prop_1 : ∀ x0 x1 x2 x3 . SNo x0SNo x2SNo_pair x0 x1 = SNo_pair x2 x3x0 = x2 (proof)
Known pair_tag_prop_2pair_tag_prop_2 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 x4 x5 . x1 x2x1 x3x1 x4x1 x5pair_tag x0 x2 x3 = pair_tag x0 x4 x5x3 = x5
Theorem SNo_pair_prop_2SNo_pair_prop_2 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNo_pair x0 x1 = SNo_pair x2 x3x1 = x3 (proof)
Definition CSNoCSNo := CD_carr (Sing 2) SNo
Known CD_carr_ICD_carr_I : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 . x1 x2x1 x3CD_carr x0 x1 (pair_tag x0 x2 x3)
Theorem CSNo_ICSNo_I : ∀ x0 x1 . SNo x0SNo x1CSNo (SNo_pair x0 x1) (proof)
Known CD_carr_ECD_carr_E : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2∀ x3 : ι → ο . (∀ x4 x5 . x1 x4x1 x5x2 = pair_tag x0 x4 x5x3 (pair_tag x0 x4 x5))x3 x2
Theorem CSNo_ECSNo_E : ∀ x0 . CSNo x0∀ x1 : ι → ο . (∀ x2 x3 . SNo x2SNo x3x0 = SNo_pair x2 x3x1 (SNo_pair x2 x3))x1 x0 (proof)
Known SNo_0SNo_0 : SNo 0
Theorem SNo_CSNoSNo_CSNo : ∀ x0 . SNo x0CSNo x0 (proof)
Theorem CSNo_0CSNo_0 : CSNo 0 (proof)
Known SNo_1SNo_1 : SNo 1
Theorem CSNo_1CSNo_1 : CSNo 1 (proof)
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known In_2_3In_2_3 : 23
Theorem CSNo_ExtendedSNoElt_3CSNo_ExtendedSNoElt_3 : ∀ x0 . CSNo x0ExtendedSNoElt_ 3 x0 (proof)
Definition Complex_iComplex_i := SNo_pair 0 1
Param CD_proj0CD_proj0 : ι(ιο) → ιι
Definition CSNo_ReCSNo_Re := CD_proj0 (Sing 2) SNo
Param CD_proj1CD_proj1 : ι(ιο) → ιι
Definition CSNo_ImCSNo_Im := CD_proj1 (Sing 2) SNo
Known CD_proj0_1CD_proj0_1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2and (x1 (CD_proj0 x0 x1 x2)) (∀ x3 : ο . (∀ x4 . and (x1 x4) (x2 = pair_tag x0 (CD_proj0 x0 x1 x2) x4)x3)x3)
Theorem CSNo_Re1CSNo_Re1 : ∀ x0 . CSNo x0and (SNo (CSNo_Re x0)) (∀ x1 : ο . (∀ x2 . and (SNo x2) (x0 = SNo_pair (CSNo_Re x0) x2)x1)x1) (proof)
Known CD_proj0_2CD_proj0_2 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 . x1 x2x1 x3CD_proj0 x0 x1 (pair_tag x0 x2 x3) = x2
Theorem CSNo_Re2CSNo_Re2 : ∀ x0 x1 . SNo x0SNo x1CSNo_Re (SNo_pair x0 x1) = x0 (proof)
Known CD_proj1_1CD_proj1_1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2and (x1 (CD_proj1 x0 x1 x2)) (x2 = pair_tag x0 (CD_proj0 x0 x1 x2) (CD_proj1 x0 x1 x2))
Theorem CSNo_Im1CSNo_Im1 : ∀ x0 . CSNo x0and (SNo (CSNo_Im x0)) (x0 = SNo_pair (CSNo_Re x0) (CSNo_Im x0)) (proof)
Known CD_proj1_2CD_proj1_2 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 . x1 x2x1 x3CD_proj1 x0 x1 (pair_tag x0 x2 x3) = x3
Theorem CSNo_Im2CSNo_Im2 : ∀ x0 x1 . SNo x0SNo x1CSNo_Im (SNo_pair x0 x1) = x1 (proof)
Known CD_proj0RCD_proj0R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2x1 (CD_proj0 x0 x1 x2)
Theorem CSNo_ReRCSNo_ReR : ∀ x0 . CSNo x0SNo (CSNo_Re x0) (proof)
Known CD_proj1RCD_proj1R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2x1 (CD_proj1 x0 x1 x2)
Theorem CSNo_ImRCSNo_ImR : ∀ x0 . CSNo x0SNo (CSNo_Im x0) (proof)
Known CD_proj0proj1_etaCD_proj0proj1_eta : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 . CD_carr x0 x1 x2x2 = pair_tag x0 (CD_proj0 x0 x1 x2) (CD_proj1 x0 x1 x2)
Theorem CSNo_ReImCSNo_ReIm : ∀ x0 . CSNo x0x0 = SNo_pair (CSNo_Re x0) (CSNo_Im x0) (proof)
Known CD_proj0proj1_splitCD_proj0proj1_split : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 . CD_carr x0 x1 x2CD_carr x0 x1 x3CD_proj0 x0 x1 x2 = CD_proj0 x0 x1 x3CD_proj1 x0 x1 x2 = CD_proj1 x0 x1 x3x2 = x3
Theorem CSNo_ReIm_splitCSNo_ReIm_split : ∀ x0 x1 . CSNo x0CSNo x1CSNo_Re x0 = CSNo_Re x1CSNo_Im x0 = CSNo_Im x1x0 = x1 (proof)
Definition CSNoLevCSNoLev := λ x0 . binunion (SNoLev (CSNo_Re x0)) (SNoLev (CSNo_Im x0))
Known ordinal_binunionordinal_binunion : ∀ x0 x1 . ordinal x0ordinal x1ordinal (binunion x0 x1)
Theorem CSNoLev_ordinalCSNoLev_ordinal : ∀ x0 . CSNo x0ordinal (CSNoLev x0) (proof)
Param CD_minusCD_minus : ι(ιο) → (ιι) → ιι
Param minus_SNominus_SNo : ιι
Definition minus_CSNominus_CSNo := CD_minus (Sing 2) SNo minus_SNo
Param CD_conjCD_conj : ι(ιο) → (ιι) → (ιι) → ιι
Definition conj_CSNoconj_CSNo := CD_conj (Sing 2) SNo minus_SNo (λ x0 . x0)
Param CD_addCD_add : ι(ιο) → (ιιι) → ιιι
Param add_SNoadd_SNo : ιιι
Definition add_CSNoadd_CSNo := CD_add (Sing 2) SNo add_SNo
Param mul_SNomul_SNo : ιιι
Definition mul_CSNomul_CSNo := CD_mul (Sing 2) SNo minus_SNo (λ x0 . x0) add_SNo mul_SNo
Definition exp_CSNo_natexp_CSNo_nat := CD_exp_nat (Sing 2) SNo minus_SNo (λ x0 . x0) add_SNo mul_SNo
Param exp_SNo_natexp_SNo_nat : ιιι
Definition abs_sqr_CSNoabs_sqr_CSNo := λ x0 . add_SNo (exp_SNo_nat (CSNo_Re x0) 2) (exp_SNo_nat (CSNo_Im x0) 2)
Param div_SNodiv_SNo : ιιι
Definition recip_CSNorecip_CSNo := λ x0 . SNo_pair (div_SNo (CSNo_Re x0) (abs_sqr_CSNo x0)) (minus_SNo (div_SNo (CSNo_Im x0) (abs_sqr_CSNo x0)))
Definition div_CSNodiv_CSNo := λ x0 x1 . mul_CSNo x0 (recip_CSNo x1)
Theorem CSNo_Complex_iCSNo_Complex_i : CSNo Complex_i (proof)
Known CD_minus_CDCD_minus_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 . CD_carr x0 x1 x3CD_carr x0 x1 (CD_minus x0 x1 x2 x3)
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Theorem CSNo_minus_CSNoCSNo_minus_CSNo : ∀ x0 . CSNo x0CSNo (minus_CSNo x0) (proof)
Known CD_minus_proj0CD_minus_proj0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 . CD_carr x0 x1 x3CD_proj0 x0 x1 (CD_minus x0 x1 x2 x3) = x2 (CD_proj0 x0 x1 x3)
Theorem minus_CSNo_CReminus_CSNo_CRe : ∀ x0 . CSNo x0CSNo_Re (minus_CSNo x0) = minus_SNo (CSNo_Re x0) (proof)
Known CD_minus_proj1CD_minus_proj1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 . CD_carr x0 x1 x3CD_proj1 x0 x1 (CD_minus x0 x1 x2 x3) = x2 (CD_proj1 x0 x1 x3)
Theorem minus_CSNo_CImminus_CSNo_CIm : ∀ x0 . CSNo x0CSNo_Im (minus_CSNo x0) = minus_SNo (CSNo_Im x0) (proof)
Known CD_conj_CDCD_conj_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 : ι → ι . (∀ x4 . x1 x4x1 (x3 x4))∀ x4 . CD_carr x0 x1 x4CD_carr x0 x1 (CD_conj x0 x1 x2 x3 x4)
Theorem CSNo_conj_CSNoCSNo_conj_CSNo : ∀ x0 . CSNo x0CSNo (conj_CSNo x0) (proof)
Known CD_conj_proj0CD_conj_proj0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 : ι → ι . (∀ x4 . x1 x4x1 (x3 x4))∀ x4 . CD_carr x0 x1 x4CD_proj0 x0 x1 (CD_conj x0 x1 x2 x3 x4) = x3 (CD_proj0 x0 x1 x4)
Theorem conj_CSNo_CReconj_CSNo_CRe : ∀ x0 . CSNo x0CSNo_Re (conj_CSNo x0) = CSNo_Re x0 (proof)
Known CD_conj_proj1CD_conj_proj1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))∀ x3 : ι → ι . (∀ x4 . x1 x4x1 (x3 x4))∀ x4 . CD_carr x0 x1 x4CD_proj1 x0 x1 (CD_conj x0 x1 x2 x3 x4) = x2 (CD_proj1 x0 x1 x4)
Theorem conj_CSNo_CImconj_CSNo_CIm : ∀ x0 . CSNo x0CSNo_Im (conj_CSNo x0) = minus_SNo (CSNo_Im x0) (proof)
Known CD_add_CDCD_add_CD : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3x1 x4x1 (x2 x3 x4))∀ x3 x4 . CD_carr x0 x1 x3CD_carr x0 x1 x4CD_carr x0 x1 (CD_add x0 x1 x2 x3 x4)
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Theorem CSNo_add_CSNoCSNo_add_CSNo : ∀ x0 x1 . CSNo x0CSNo x1CSNo (add_CSNo x0 x1) (proof)
Theorem CSNo_add_CSNo_3CSNo_add_CSNo_3 : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2CSNo (add_CSNo x0 (add_CSNo x1 x2)) (proof)
Known CD_add_proj0CD_add_proj0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3x1 x4x1 (x2 x3 x4))∀ x3 x4 . CD_carr x0 x1 x3CD_carr x0 x1 x4CD_proj0 x0 x1 (CD_add x0 x1 x2 x3 x4) = x2 (CD_proj0 x0 x1 x3) (CD_proj0 x0 x1 x4)
Theorem add_CSNo_CReadd_CSNo_CRe : ∀ x0 x1 . CSNo x0CSNo x1CSNo_Re (add_CSNo x0 x1) = add_SNo (CSNo_Re x0) (CSNo_Re x1) (proof)
Known CD_add_proj1CD_add_proj1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3x1 x4x1 (x2 x3 x4))∀ x3 x4 . CD_carr x0 x1 x3CD_carr x0 x1 x4CD_proj1 x0 x1 (CD_add x0 x1 x2 x3 x4) = x2 (CD_proj1 x0 x1 x3) (CD_proj1 x0 x1 x4)
Theorem add_CSNo_CImadd_CSNo_CIm : ∀ x0 x1 . CSNo x0CSNo x1CSNo_Im (add_CSNo x0 x1) = add_SNo (CSNo_Im x0) (CSNo_Im x1) (proof)
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Theorem CSNo_mul_CSNoCSNo_mul_CSNo : ∀ x0 x1 . CSNo x0CSNo x1CSNo (mul_CSNo x0 x1) (proof)
Theorem CSNo_mul_CSNo_3CSNo_mul_CSNo_3 : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2CSNo (mul_CSNo x0 (mul_CSNo x1 x2)) (proof)
Known CD_mul_proj0CD_mul_proj0 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_proj0 x0 x1 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) = x4 (x5 (CD_proj0 x0 x1 x6) (CD_proj0 x0 x1 x7)) (x2 (x5 (x3 (CD_proj1 x0 x1 x7)) (CD_proj1 x0 x1 x6)))
Theorem mul_CSNo_CRemul_CSNo_CRe : ∀ x0 x1 . CSNo x0CSNo x1CSNo_Re (mul_CSNo x0 x1) = add_SNo (mul_SNo (CSNo_Re x0) (CSNo_Re x1)) (minus_SNo (mul_SNo (CSNo_Im x1) (CSNo_Im x0))) (proof)
Known CD_mul_proj1CD_mul_proj1 : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_proj1 x0 x1 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) = x4 (x5 (CD_proj1 x0 x1 x7) (CD_proj0 x0 x1 x6)) (x5 (CD_proj1 x0 x1 x6) (x3 (CD_proj0 x0 x1 x7)))
Theorem mul_CSNo_CImmul_CSNo_CIm : ∀ x0 x1 . CSNo x0CSNo x1CSNo_Im (mul_CSNo x0 x1) = add_SNo (mul_SNo (CSNo_Im x1) (CSNo_Re x0)) (mul_SNo (CSNo_Im x0) (CSNo_Re x1)) (proof)
Known CD_proj0_FCD_proj0_F : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)x1 0∀ x2 . x1 x2CD_proj0 x0 x1 x2 = x2
Theorem SNo_ReSNo_Re : ∀ x0 . SNo x0CSNo_Re x0 = x0 (proof)
Known CD_proj1_FCD_proj1_F : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)x1 0∀ x2 . x1 x2CD_proj1 x0 x1 x2 = 0
Theorem SNo_ImSNo_Im : ∀ x0 . SNo x0CSNo_Im x0 = 0 (proof)
Theorem Re_0Re_0 : CSNo_Re 0 = 0 (proof)
Theorem Im_0Im_0 : CSNo_Im 0 = 0 (proof)
Theorem Re_1Re_1 : CSNo_Re 1 = 1 (proof)
Theorem Im_1Im_1 : CSNo_Im 1 = 0 (proof)
Theorem Re_iRe_i : CSNo_Re Complex_i = 0 (proof)
Theorem Im_iIm_i : CSNo_Im Complex_i = 1 (proof)
Known CD_conj_F_eqCD_conj_F_eq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . x1 0x2 0 = 0∀ x3 : ι → ι . ∀ x4 . x1 x4CD_conj x0 x1 x2 x3 x4 = x3 x4
Known minus_SNo_0minus_SNo_0 : minus_SNo 0 = 0
Theorem conj_CSNo_id_SNoconj_CSNo_id_SNo : ∀ x0 . SNo x0conj_CSNo x0 = x0 (proof)
Theorem conj_CSNo_0conj_CSNo_0 : conj_CSNo 0 = 0 (proof)
Theorem conj_CSNo_1conj_CSNo_1 : conj_CSNo 1 = 1 (proof)
Theorem conj_CSNo_iconj_CSNo_i : conj_CSNo Complex_i = minus_CSNo Complex_i (proof)
Known CD_minus_F_eqCD_minus_F_eq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . x1 0x2 0 = 0∀ x3 . x1 x3CD_minus x0 x1 x2 x3 = x2 x3
Theorem minus_CSNo_minus_SNominus_CSNo_minus_SNo : ∀ x0 . SNo x0minus_CSNo x0 = minus_SNo x0 (proof)
Theorem minus_CSNo_0minus_CSNo_0 : minus_CSNo 0 = 0 (proof)
Known CD_add_F_eqCD_add_F_eq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . x1 0x2 0 0 = 0∀ x3 x4 . x1 x3x1 x4CD_add x0 x1 x2 x3 x4 = x2 x3 x4
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Theorem add_CSNo_add_SNoadd_CSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1add_CSNo x0 x1 = add_SNo x0 x1 (proof)
Known CD_mul_F_eqCD_mul_F_eq : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))x2 0 = 0(∀ x6 . x1 x6x4 x6 0 = x6)(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 0 = 0)∀ x6 x7 . x1 x6x1 x7CD_mul x0 x1 x2 x3 x4 x5 x6 x7 = x5 x6 x7
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known mul_SNo_zeroLmul_SNo_zeroL : ∀ x0 . SNo x0mul_SNo 0 x0 = 0
Known mul_SNo_zeroRmul_SNo_zeroR : ∀ x0 . SNo x0mul_SNo x0 0 = 0
Theorem mul_CSNo_mul_SNomul_CSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1mul_CSNo x0 x1 = mul_SNo x0 x1 (proof)
Known CD_minus_involCD_minus_invol : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x2 x3))(∀ x3 . x1 x3x2 (x2 x3) = x3)∀ x3 . CD_carr x0 x1 x3CD_minus x0 x1 x2 (CD_minus x0 x1 x2 x3) = x3
Known minus_SNo_involminus_SNo_invol : ∀ x0 . SNo x0minus_SNo (minus_SNo x0) = x0
Theorem minus_CSNo_involminus_CSNo_invol : ∀ x0 . CSNo x0minus_CSNo (minus_CSNo x0) = x0 (proof)
Known CD_conj_involCD_conj_invol : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . (∀ x4 . x1 x4x1 (x2 x4))(∀ x4 . x1 x4x1 (x3 x4))(∀ x4 . x1 x4x2 (x2 x4) = x4)(∀ x4 . x1 x4x3 (x3 x4) = x4)∀ x4 . CD_carr x0 x1 x4CD_conj x0 x1 x2 x3 (CD_conj x0 x1 x2 x3 x4) = x4
Theorem conj_CSNo_involconj_CSNo_invol : ∀ x0 . CSNo x0conj_CSNo (conj_CSNo x0) = x0 (proof)
Known CD_conj_minusCD_conj_minus : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . (∀ x4 . x1 x4x1 (x2 x4))(∀ x4 . x1 x4x1 (x3 x4))(∀ x4 . x1 x4x3 (x2 x4) = x2 (x3 x4))∀ x4 . CD_carr x0 x1 x4CD_conj x0 x1 x2 x3 (CD_minus x0 x1 x2 x4) = CD_minus x0 x1 x2 (CD_conj x0 x1 x2 x3 x4)
Theorem conj_minus_CSNoconj_minus_CSNo : ∀ x0 . CSNo x0conj_CSNo (minus_CSNo x0) = minus_CSNo (conj_CSNo x0) (proof)
Known CD_minus_addCD_minus_add : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . ∀ x3 : ι → ι → ι . (∀ x4 . x1 x4x1 (x2 x4))(∀ x4 x5 . x1 x4x1 x5x1 (x3 x4 x5))(∀ x4 x5 . x1 x4x1 x5x2 (x3 x4 x5) = x3 (x2 x4) (x2 x5))∀ x4 x5 . CD_carr x0 x1 x4CD_carr x0 x1 x5CD_minus x0 x1 x2 (CD_add x0 x1 x3 x4 x5) = CD_add x0 x1 x3 (CD_minus x0 x1 x2 x4) (CD_minus x0 x1 x2 x5)
Known minus_add_SNo_distrminus_add_SNo_distr : ∀ x0 x1 . SNo x0SNo x1minus_SNo (add_SNo x0 x1) = add_SNo (minus_SNo x0) (minus_SNo x1)
Theorem minus_add_CSNominus_add_CSNo : ∀ x0 x1 . CSNo x0CSNo x1minus_CSNo (add_CSNo x0 x1) = add_CSNo (minus_CSNo x0) (minus_CSNo x1) (proof)
Known CD_conj_addCD_conj_add : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 : ι → ι → ι . (∀ x5 . x1 x5x1 (x2 x5))(∀ x5 . x1 x5x1 (x3 x5))(∀ x5 x6 . x1 x5x1 x6x1 (x4 x5 x6))(∀ x5 x6 . x1 x5x1 x6x2 (x4 x5 x6) = x4 (x2 x5) (x2 x6))(∀ x5 x6 . x1 x5x1 x6x3 (x4 x5 x6) = x4 (x3 x5) (x3 x6))∀ x5 x6 . CD_carr x0 x1 x5CD_carr x0 x1 x6CD_conj x0 x1 x2 x3 (CD_add x0 x1 x4 x5 x6) = CD_add x0 x1 x4 (CD_conj x0 x1 x2 x3 x5) (CD_conj x0 x1 x2 x3 x6)
Theorem conj_add_CSNoconj_add_CSNo : ∀ x0 x1 . CSNo x0CSNo x1conj_CSNo (add_CSNo x0 x1) = add_CSNo (conj_CSNo x0) (conj_CSNo x1) (proof)
Known CD_add_comCD_add_com : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3x1 x4x2 x3 x4 = x2 x4 x3)∀ x3 x4 . CD_carr x0 x1 x3CD_carr x0 x1 x4CD_add x0 x1 x2 x3 x4 = CD_add x0 x1 x2 x4 x3
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Theorem add_CSNo_comadd_CSNo_com : ∀ x0 x1 . CSNo x0CSNo x1add_CSNo x0 x1 = add_CSNo x1 x0 (proof)
Known CD_add_assocCD_add_assoc : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . (∀ x3 x4 . x1 x3x1 x4x1 (x2 x3 x4))(∀ x3 x4 x5 . x1 x3x1 x4x1 x5x2 (x2 x3 x4) x5 = x2 x3 (x2 x4 x5))∀ x3 x4 x5 . CD_carr x0 x1 x3CD_carr x0 x1 x4CD_carr x0 x1 x5CD_add x0 x1 x2 (CD_add x0 x1 x2 x3 x4) x5 = CD_add x0 x1 x2 x3 (CD_add x0 x1 x2 x4 x5)
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Theorem add_CSNo_assocadd_CSNo_assoc : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2add_CSNo (add_CSNo x0 x1) x2 = add_CSNo x0 (add_CSNo x1 x2) (proof)
Known CD_add_0LCD_add_0L : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . x1 0(∀ x3 . x1 x3x2 0 x3 = x3)∀ x3 . CD_carr x0 x1 x3CD_add x0 x1 x2 0 x3 = x3
Theorem add_CSNo_0Ladd_CSNo_0L : ∀ x0 . CSNo x0add_CSNo 0 x0 = x0 (proof)
Known CD_add_0RCD_add_0R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι → ι . x1 0(∀ x3 . x1 x3x2 x3 0 = x3)∀ x3 . CD_carr x0 x1 x3CD_add x0 x1 x2 x3 0 = x3
Theorem add_CSNo_0Radd_CSNo_0R : ∀ x0 . CSNo x0add_CSNo x0 0 = x0 (proof)
Known CD_add_minus_linvCD_add_minus_linv : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . ∀ x3 : ι → ι → ι . (∀ x4 . x1 x4x1 (x2 x4))(∀ x4 . x1 x4x3 (x2 x4) x4 = 0)∀ x4 . CD_carr x0 x1 x4CD_add x0 x1 x3 (CD_minus x0 x1 x2 x4) x4 = 0
Known add_SNo_minus_SNo_linvadd_SNo_minus_SNo_linv : ∀ x0 . SNo x0add_SNo (minus_SNo x0) x0 = 0
Theorem add_CSNo_minus_CSNo_linvadd_CSNo_minus_CSNo_linv : ∀ x0 . CSNo x0add_CSNo (minus_CSNo x0) x0 = 0 (proof)
Known CD_add_minus_rinvCD_add_minus_rinv : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 : ι → ι . ∀ x3 : ι → ι → ι . (∀ x4 . x1 x4x1 (x2 x4))(∀ x4 . x1 x4x3 x4 (x2 x4) = 0)∀ x4 . CD_carr x0 x1 x4CD_add x0 x1 x3 x4 (CD_minus x0 x1 x2 x4) = 0
Known add_SNo_minus_SNo_rinvadd_SNo_minus_SNo_rinv : ∀ x0 . SNo x0add_SNo x0 (minus_SNo x0) = 0
Theorem add_CSNo_minus_CSNo_rinvadd_CSNo_minus_CSNo_rinv : ∀ x0 . CSNo x0add_CSNo x0 (minus_CSNo x0) = 0 (proof)
Known CD_mul_0RCD_mul_0R : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0x2 0 = 0x3 0 = 0x4 0 0 = 0(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 0 = 0)∀ x6 . CD_carr x0 x1 x6CD_mul x0 x1 x2 x3 x4 x5 x6 0 = 0
Theorem mul_CSNo_0Rmul_CSNo_0R : ∀ x0 . CSNo x0mul_CSNo x0 0 = 0 (proof)
Known CD_mul_0LCD_mul_0L : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0(∀ x6 . x1 x6x1 (x3 x6))x2 0 = 0x4 0 0 = 0(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 0 = 0)∀ x6 . CD_carr x0 x1 x6CD_mul x0 x1 x2 x3 x4 x5 0 x6 = 0
Theorem mul_CSNo_0Lmul_CSNo_0L : ∀ x0 . CSNo x0mul_CSNo 0 x0 = 0 (proof)
Known mul_SNo_oneRmul_SNo_oneR : ∀ x0 . SNo x0mul_SNo x0 1 = x0
Theorem mul_CSNo_1Rmul_CSNo_1R : ∀ x0 . CSNo x0mul_CSNo x0 1 = x0 (proof)
Known CD_mul_1LCD_mul_1L : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . x1 0x1 1(∀ x6 . x1 x6x1 (x3 x6))x2 0 = 0(∀ x6 . x1 x6x4 x6 0 = x6)(∀ x6 . x1 x6x5 0 x6 = 0)(∀ x6 . x1 x6x5 x6 0 = 0)(∀ x6 . x1 x6x5 1 x6 = x6)(∀ x6 . x1 x6x5 x6 1 = x6)∀ x6 . CD_carr x0 x1 x6CD_mul x0 x1 x2 x3 x4 x5 1 x6 = x6
Known mul_SNo_oneLmul_SNo_oneL : ∀ x0 . SNo x0mul_SNo 1 x0 = x0
Theorem mul_CSNo_1Lmul_CSNo_1L : ∀ x0 . CSNo x0mul_CSNo 1 x0 = x0 (proof)
Known CD_conj_mulCD_conj_mul : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))(∀ x6 . x1 x6x2 (x2 x6) = x6)(∀ x6 . x1 x6x3 (x3 x6) = x6)(∀ x6 . x1 x6x3 (x2 x6) = x2 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x3 (x4 x6 x7) = x4 (x3 x6) (x3 x7))(∀ x6 x7 . x1 x6x1 x7x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7))(∀ x6 x7 . x1 x6x1 x7x4 x6 x7 = x4 x7 x6)(∀ x6 x7 . x1 x6x1 x7x3 (x5 x6 x7) = x5 (x3 x7) (x3 x6))(∀ x6 x7 . x1 x6x1 x7x5 x6 (x2 x7) = x2 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x5 (x2 x6) x7 = x2 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_conj x0 x1 x2 x3 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) = CD_mul x0 x1 x2 x3 x4 x5 (CD_conj x0 x1 x2 x3 x7) (CD_conj x0 x1 x2 x3 x6)
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Known mul_SNo_minus_distrRmul_SNo_minus_distrR : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 (minus_SNo x1) = minus_SNo (mul_SNo x0 x1)
Known mul_SNo_minus_distrLmul_SNo_minus_distrL : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) x1 = minus_SNo (mul_SNo x0 x1)
Theorem conj_mul_CSNoconj_mul_CSNo : ∀ x0 x1 . CSNo x0CSNo x1conj_CSNo (mul_CSNo x0 x1) = mul_CSNo (conj_CSNo x1) (conj_CSNo x0) (proof)
Known CD_add_mul_distrLCD_add_mul_distrL : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7))(∀ x6 x7 . x1 x6x1 x7x3 (x4 x6 x7) = x4 (x3 x6) (x3 x7))(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x4 (x4 x6 x7) x8 = x4 x6 (x4 x7 x8))(∀ x6 x7 . x1 x6x1 x7x4 x6 x7 = x4 x7 x6)(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x5 x6 (x4 x7 x8) = x4 (x5 x6 x7) (x5 x6 x8))(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x5 (x4 x6 x7) x8 = x4 (x5 x6 x8) (x5 x7 x8))∀ x6 x7 x8 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_carr x0 x1 x8CD_mul x0 x1 x2 x3 x4 x5 x6 (CD_add x0 x1 x4 x7 x8) = CD_add x0 x1 x4 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) (CD_mul x0 x1 x2 x3 x4 x5 x6 x8)
Known mul_SNo_distrLmul_SNo_distrL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (add_SNo x1 x2) = add_SNo (mul_SNo x0 x1) (mul_SNo x0 x2)
Known mul_SNo_distrRmul_SNo_distrR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo (add_SNo x0 x1) x2 = add_SNo (mul_SNo x0 x2) (mul_SNo x1 x2)
Theorem mul_CSNo_distrLmul_CSNo_distrL : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo x0 (add_CSNo x1 x2) = add_CSNo (mul_CSNo x0 x1) (mul_CSNo x0 x2) (proof)
Known CD_add_mul_distrRCD_add_mul_distrR : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7))(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x4 (x4 x6 x7) x8 = x4 x6 (x4 x7 x8))(∀ x6 x7 . x1 x6x1 x7x4 x6 x7 = x4 x7 x6)(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x5 x6 (x4 x7 x8) = x4 (x5 x6 x7) (x5 x6 x8))(∀ x6 x7 x8 . x1 x6x1 x7x1 x8x5 (x4 x6 x7) x8 = x4 (x5 x6 x8) (x5 x7 x8))∀ x6 x7 x8 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_carr x0 x1 x8CD_mul x0 x1 x2 x3 x4 x5 (CD_add x0 x1 x4 x6 x7) x8 = CD_add x0 x1 x4 (CD_mul x0 x1 x2 x3 x4 x5 x6 x8) (CD_mul x0 x1 x2 x3 x4 x5 x7 x8)
Theorem mul_CSNo_distrRmul_CSNo_distrR : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo (add_CSNo x0 x1) x2 = add_CSNo (mul_CSNo x0 x2) (mul_CSNo x1 x2) (proof)
Known CD_minus_mul_distrRCD_minus_mul_distrR : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))(∀ x6 . x1 x6x3 (x2 x6) = x2 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7))(∀ x6 x7 . x1 x6x1 x7x5 x6 (x2 x7) = x2 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x5 (x2 x6) x7 = x2 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_mul x0 x1 x2 x3 x4 x5 x6 (CD_minus x0 x1 x2 x7) = CD_minus x0 x1 x2 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7)
Theorem minus_mul_CSNo_distrRminus_mul_CSNo_distrR : ∀ x0 x1 . CSNo x0CSNo x1mul_CSNo x0 (minus_CSNo x1) = minus_CSNo (mul_CSNo x0 x1) (proof)
Known CD_minus_mul_distrLCD_minus_mul_distrL : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3)∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6x1 (x2 x6))(∀ x6 . x1 x6x1 (x3 x6))(∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7))(∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7))(∀ x6 x7 . x1 x6x1 x7x5 x6 (x2 x7) = x2 (x5 x6 x7))(∀ x6 x7 . x1 x6x1 x7x5 (x2 x6) x7 = x2 (x5 x6 x7))∀ x6 x7 . CD_carr x0 x1 x6CD_carr x0 x1 x7CD_mul x0 x1 x2 x3 x4 x5 (CD_minus x0 x1 x2 x6) x7 = CD_minus x0 x1 x2 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7)
Theorem minus_mul_CSNo_distrLminus_mul_CSNo_distrL : ∀ x0 x1 . CSNo x0CSNo x1mul_CSNo (minus_CSNo x0) x1 = minus_CSNo (mul_CSNo x0 x1) (proof)
Theorem exp_CSNo_nat_0exp_CSNo_nat_0 : ∀ x0 . exp_CSNo_nat x0 0 = 1 (proof)
Theorem exp_CSNo_nat_Sexp_CSNo_nat_S : ∀ x0 x1 . nat_p x1exp_CSNo_nat x0 (ordsucc x1) = mul_CSNo x0 (exp_CSNo_nat x0 x1) (proof)
Theorem exp_CSNo_nat_1exp_CSNo_nat_1 : ∀ x0 . CSNo x0exp_CSNo_nat x0 1 = x0 (proof)
Theorem exp_CSNo_nat_2exp_CSNo_nat_2 : ∀ x0 . CSNo x0exp_CSNo_nat x0 2 = mul_CSNo x0 x0 (proof)
Theorem CSNo_exp_CSNo_natCSNo_exp_CSNo_nat : ∀ x0 . CSNo x0∀ x1 . nat_p x1CSNo (exp_CSNo_nat x0 x1) (proof)
Known add_SNo_com_4_inner_midadd_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (add_SNo x0 x2) (add_SNo x1 x3)
Theorem add_SNo_rotate_4_0312add_SNo_rotate_4_0312 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (add_SNo x0 x3) (add_SNo x1 x2) (proof)
Theorem mul_CSNo_commul_CSNo_com : ∀ x0 x1 . CSNo x0CSNo x1mul_CSNo x0 x1 = mul_CSNo x1 x0 (proof)
Known mul_SNo_assocmul_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2
Known SNo_mul_SNo_3SNo_mul_SNo_3 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNo (mul_SNo x0 (mul_SNo x1 x2))
Known mul_SNo_com_3_0_1mul_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo x1 (mul_SNo x0 x2)
Theorem mul_CSNo_assocmul_CSNo_assoc : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo x0 (mul_CSNo x1 x2) = mul_CSNo (mul_CSNo x0 x1) x2 (proof)
Theorem Complex_i_sqrComplex_i_sqr : mul_CSNo Complex_i Complex_i = minus_CSNo 1 (proof)

previous assets