Search for blocks/addresses/...
Proofgold Address
address
PUQvq9Kd4x1hksKKcMqahVA5LZygzn5XRe8
total
0
mg
-
conjpub
-
current assets
85795..
/
2ce89..
bday:
28444
doc published by
PrQUS..
Param
ordsucc
ordsucc
:
ι
→
ι
Known
ordsucc_inj_contra
ordsucc_inj_contra
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
ordsucc
x0
=
ordsucc
x1
⟶
∀ x2 : ο .
x2
Known
neq_0_2
neq_0_2
:
0
=
2
⟶
∀ x0 : ο .
x0
Theorem
neq_1_3
neq_1_3
:
1
=
3
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_1_2
neq_1_2
:
1
=
2
⟶
∀ x0 : ο .
x0
Theorem
neq_2_3
neq_2_3
:
2
=
3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_2_4
neq_2_4
:
2
=
4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_3_4
neq_3_4
:
3
=
4
⟶
∀ x0 : ο .
x0
(proof)
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Param
CD_mul
CD_mul
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
Definition
CD_exp_nat
CD_exp_nat
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 x3 :
ι → ι
.
λ x4 x5 :
ι →
ι → ι
.
λ x6 .
nat_primrec
1
(
λ x7 .
CD_mul
x0
x1
x2
x3
x4
x5
x6
)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Theorem
CD_exp_nat_0
CD_exp_nat_0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 .
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
0
=
1
(proof)
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Theorem
CD_exp_nat_S
CD_exp_nat_S
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 x7 .
nat_p
x7
⟶
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
(
ordsucc
x7
)
=
CD_mul
x0
x1
x2
x3
x4
x5
x6
(
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
x7
)
(proof)
Param
CD_carr
CD_carr
:
ι
→
(
ι
→
ο
) →
ι
→
ο
Known
nat_0
nat_0
:
nat_p
0
Known
CD_mul_1R
CD_mul_1R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x1
1
⟶
x2
0
=
0
⟶
x3
0
=
0
⟶
x3
1
=
1
⟶
(
∀ x6 .
x1
x6
⟶
x4
0
x6
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
1
=
x6
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
1
=
x6
Theorem
CD_exp_nat_1
CD_exp_nat_1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x1
1
⟶
x2
0
=
0
⟶
x3
0
=
0
⟶
x3
1
=
1
⟶
(
∀ x6 .
x1
x6
⟶
x4
0
x6
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
1
=
x6
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
1
=
x6
(proof)
Known
nat_1
nat_1
:
nat_p
1
Theorem
CD_exp_nat_2
CD_exp_nat_2
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x1
1
⟶
x2
0
=
0
⟶
x3
0
=
0
⟶
x3
1
=
1
⟶
(
∀ x6 .
x1
x6
⟶
x4
0
x6
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
1
=
x6
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
2
=
CD_mul
x0
x1
x2
x3
x4
x5
x6
x6
(proof)
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
CD_carr_0ext
CD_carr_0ext
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
x1
0
⟶
∀ x2 .
x1
x2
⟶
CD_carr
x0
x1
x2
Known
CD_mul_CD
CD_mul_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_carr
x0
x1
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
Theorem
CD_exp_nat_CD
CD_exp_nat_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
x1
0
⟶
x1
1
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
∀ x7 .
nat_p
x7
⟶
CD_carr
x0
x1
(
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
x7
)
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Param
Sing
Sing
:
ι
→
ι
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Known
In_0_1
In_0_1
:
0
∈
1
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Theorem
not_TransSet_Sing_tagn
not_TransSet_Sing_tagn
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
not
(
TransSet
(
Sing
x0
)
)
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
ordinal
ordinal
:=
λ x0 .
and
(
TransSet
x0
)
(
∀ x1 .
x1
∈
x0
⟶
TransSet
x1
)
Theorem
not_ordinal_Sing_tagn
not_ordinal_Sing_tagn
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
not
(
ordinal
(
Sing
x0
)
)
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
ExtendedSNoElt_
ExtendedSNoElt_
:=
λ x0 x1 .
∀ x2 .
x2
∈
prim3
x1
⟶
or
(
ordinal
x2
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
=
Sing
x4
)
⟶
x3
)
⟶
x3
)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
extension_SNoElt_mon
extension_SNoElt_mon
:
∀ x0 x1 .
x0
⊆
x1
⟶
∀ x2 .
ExtendedSNoElt_
x0
x2
⟶
ExtendedSNoElt_
x1
x2
(proof)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
Sing_inj
Sing_inj
:
∀ x0 x1 .
Sing
x0
=
Sing
x1
⟶
x0
=
x1
Known
UnionI
UnionI
:
∀ x0 x1 x2 .
x1
∈
x2
⟶
x2
∈
x0
⟶
x1
∈
prim3
x0
Theorem
Sing_nat_fresh_extension
Sing_nat_fresh_extension
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 .
ExtendedSNoElt_
x0
x1
⟶
∀ x2 .
x2
∈
x1
⟶
nIn
(
Sing
x0
)
x2
(proof)
Param
SNo
SNo
:
ι
→
ο
Known
UnionE_impred
UnionE_impred
:
∀ x0 x1 .
x1
∈
prim3
x0
⟶
∀ x2 : ο .
(
∀ x3 .
x1
∈
x3
⟶
x3
∈
x0
⟶
x2
)
⟶
x2
Param
binunion
binunion
:
ι
→
ι
→
ι
Definition
SetAdjoin
SetAdjoin
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Definition
SNoElts_
SNoElts_
:=
λ x0 .
binunion
x0
{
SetAdjoin
x1
(
Sing
1
)
|x1 ∈
x0
}
Param
exactly1of2
exactly1of2
:
ο
→
ο
→
ο
Definition
SNo_
SNo_
:=
λ x0 x1 .
and
(
x1
⊆
SNoElts_
x0
)
(
∀ x2 .
x2
∈
x0
⟶
exactly1of2
(
SetAdjoin
x2
(
Sing
1
)
∈
x1
)
(
x2
∈
x1
)
)
Param
SNoLev
SNoLev
:
ι
→
ι
Known
SNoLev_
SNoLev_
:
∀ x0 .
SNo
x0
⟶
SNo_
(
SNoLev
x0
)
x0
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
ordinal_Hered
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordinal
x1
Known
SNoLev_ordinal
SNoLev_ordinal
:
∀ x0 .
SNo
x0
⟶
ordinal
(
SNoLev
x0
)
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
In_1_2
In_1_2
:
1
∈
2
Theorem
SNo_ExtendedSNoElt_2
SNo_ExtendedSNoElt_2
:
∀ x0 .
SNo
x0
⟶
ExtendedSNoElt_
2
x0
(proof)
Known
nat_2
nat_2
:
nat_p
2
Theorem
complex_tag_fresh
complex_tag_fresh
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nIn
(
Sing
2
)
x1
(proof)
Definition
pair_tag
pair_tag
:=
λ x0 x1 x2 .
binunion
x1
{
SetAdjoin
x3
x0
|x3 ∈
x2
}
Definition
SNo_pair
SNo_pair
:=
pair_tag
(
Sing
2
)
Known
pair_tag_0
pair_tag_0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
pair_tag
x0
x2
0
=
x2
Theorem
SNo_pair_0
SNo_pair_0
:
∀ x0 .
SNo_pair
x0
0
=
x0
(proof)
Known
pair_tag_prop_1
pair_tag_prop_1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 x4 x5 .
x1
x2
⟶
x1
x4
⟶
pair_tag
x0
x2
x3
=
pair_tag
x0
x4
x5
⟶
x2
=
x4
Theorem
SNo_pair_prop_1
SNo_pair_prop_1
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x2
⟶
SNo_pair
x0
x1
=
SNo_pair
x2
x3
⟶
x0
=
x2
(proof)
Known
pair_tag_prop_2
pair_tag_prop_2
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 x4 x5 .
x1
x2
⟶
x1
x3
⟶
x1
x4
⟶
x1
x5
⟶
pair_tag
x0
x2
x3
=
pair_tag
x0
x4
x5
⟶
x3
=
x5
Theorem
SNo_pair_prop_2
SNo_pair_prop_2
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo_pair
x0
x1
=
SNo_pair
x2
x3
⟶
x1
=
x3
(proof)
Definition
CSNo
CSNo
:=
CD_carr
(
Sing
2
)
SNo
Known
CD_carr_I
CD_carr_I
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
CD_carr
x0
x1
(
pair_tag
x0
x2
x3
)
Theorem
CSNo_I
CSNo_I
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
CSNo
(
SNo_pair
x0
x1
)
(proof)
Known
CD_carr_E
CD_carr_E
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
∀ x3 :
ι → ο
.
(
∀ x4 x5 .
x1
x4
⟶
x1
x5
⟶
x2
=
pair_tag
x0
x4
x5
⟶
x3
(
pair_tag
x0
x4
x5
)
)
⟶
x3
x2
Theorem
CSNo_E
CSNo_E
:
∀ x0 .
CSNo
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 x3 .
SNo
x2
⟶
SNo
x3
⟶
x0
=
SNo_pair
x2
x3
⟶
x1
(
SNo_pair
x2
x3
)
)
⟶
x1
x0
(proof)
Known
SNo_0
SNo_0
:
SNo
0
Theorem
SNo_CSNo
SNo_CSNo
:
∀ x0 .
SNo
x0
⟶
CSNo
x0
(proof)
Theorem
CSNo_0
CSNo_0
:
CSNo
0
(proof)
Known
SNo_1
SNo_1
:
SNo
1
Theorem
CSNo_1
CSNo_1
:
CSNo
1
(proof)
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
In_2_3
In_2_3
:
2
∈
3
Theorem
CSNo_ExtendedSNoElt_3
CSNo_ExtendedSNoElt_3
:
∀ x0 .
CSNo
x0
⟶
ExtendedSNoElt_
3
x0
(proof)
Definition
Complex_i
Complex_i
:=
SNo_pair
0
1
Param
CD_proj0
CD_proj0
:
ι
→
(
ι
→
ο
) →
ι
→
ι
Definition
CSNo_Re
CSNo_Re
:=
CD_proj0
(
Sing
2
)
SNo
Param
CD_proj1
CD_proj1
:
ι
→
(
ι
→
ο
) →
ι
→
ι
Definition
CSNo_Im
CSNo_Im
:=
CD_proj1
(
Sing
2
)
SNo
Known
CD_proj0_1
CD_proj0_1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
and
(
x1
(
CD_proj0
x0
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x1
x4
)
(
x2
=
pair_tag
x0
(
CD_proj0
x0
x1
x2
)
x4
)
⟶
x3
)
⟶
x3
)
Theorem
CSNo_Re1
CSNo_Re1
:
∀ x0 .
CSNo
x0
⟶
and
(
SNo
(
CSNo_Re
x0
)
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
SNo
x2
)
(
x0
=
SNo_pair
(
CSNo_Re
x0
)
x2
)
⟶
x1
)
⟶
x1
)
(proof)
Known
CD_proj0_2
CD_proj0_2
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
CD_proj0
x0
x1
(
pair_tag
x0
x2
x3
)
=
x2
Theorem
CSNo_Re2
CSNo_Re2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
CSNo_Re
(
SNo_pair
x0
x1
)
=
x0
(proof)
Known
CD_proj1_1
CD_proj1_1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
and
(
x1
(
CD_proj1
x0
x1
x2
)
)
(
x2
=
pair_tag
x0
(
CD_proj0
x0
x1
x2
)
(
CD_proj1
x0
x1
x2
)
)
Theorem
CSNo_Im1
CSNo_Im1
:
∀ x0 .
CSNo
x0
⟶
and
(
SNo
(
CSNo_Im
x0
)
)
(
x0
=
SNo_pair
(
CSNo_Re
x0
)
(
CSNo_Im
x0
)
)
(proof)
Known
CD_proj1_2
CD_proj1_2
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
CD_proj1
x0
x1
(
pair_tag
x0
x2
x3
)
=
x3
Theorem
CSNo_Im2
CSNo_Im2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
CSNo_Im
(
SNo_pair
x0
x1
)
=
x1
(proof)
Known
CD_proj0R
CD_proj0R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
x1
(
CD_proj0
x0
x1
x2
)
Theorem
CSNo_ReR
CSNo_ReR
:
∀ x0 .
CSNo
x0
⟶
SNo
(
CSNo_Re
x0
)
(proof)
Known
CD_proj1R
CD_proj1R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
x1
(
CD_proj1
x0
x1
x2
)
Theorem
CSNo_ImR
CSNo_ImR
:
∀ x0 .
CSNo
x0
⟶
SNo
(
CSNo_Im
x0
)
(proof)
Known
CD_proj0proj1_eta
CD_proj0proj1_eta
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
x2
=
pair_tag
x0
(
CD_proj0
x0
x1
x2
)
(
CD_proj1
x0
x1
x2
)
Theorem
CSNo_ReIm
CSNo_ReIm
:
∀ x0 .
CSNo
x0
⟶
x0
=
SNo_pair
(
CSNo_Re
x0
)
(
CSNo_Im
x0
)
(proof)
Known
CD_proj0proj1_split
CD_proj0proj1_split
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
CD_carr
x0
x1
x2
⟶
CD_carr
x0
x1
x3
⟶
CD_proj0
x0
x1
x2
=
CD_proj0
x0
x1
x3
⟶
CD_proj1
x0
x1
x2
=
CD_proj1
x0
x1
x3
⟶
x2
=
x3
Theorem
CSNo_ReIm_split
CSNo_ReIm_split
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo_Re
x0
=
CSNo_Re
x1
⟶
CSNo_Im
x0
=
CSNo_Im
x1
⟶
x0
=
x1
(proof)
Definition
CSNoLev
CSNoLev
:=
λ x0 .
binunion
(
SNoLev
(
CSNo_Re
x0
)
)
(
SNoLev
(
CSNo_Im
x0
)
)
Known
ordinal_binunion
ordinal_binunion
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
(
binunion
x0
x1
)
Theorem
CSNoLev_ordinal
CSNoLev_ordinal
:
∀ x0 .
CSNo
x0
⟶
ordinal
(
CSNoLev
x0
)
(proof)
Param
CD_minus
CD_minus
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
ι
→
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Definition
minus_CSNo
minus_CSNo
:=
CD_minus
(
Sing
2
)
SNo
minus_SNo
Param
CD_conj
CD_conj
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Definition
conj_CSNo
conj_CSNo
:=
CD_conj
(
Sing
2
)
SNo
minus_SNo
(
λ x0 .
x0
)
Param
CD_add
CD_add
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Definition
add_CSNo
add_CSNo
:=
CD_add
(
Sing
2
)
SNo
add_SNo
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Definition
mul_CSNo
mul_CSNo
:=
CD_mul
(
Sing
2
)
SNo
minus_SNo
(
λ x0 .
x0
)
add_SNo
mul_SNo
Definition
exp_CSNo_nat
exp_CSNo_nat
:=
CD_exp_nat
(
Sing
2
)
SNo
minus_SNo
(
λ x0 .
x0
)
add_SNo
mul_SNo
Param
exp_SNo_nat
exp_SNo_nat
:
ι
→
ι
→
ι
Definition
abs_sqr_CSNo
abs_sqr_CSNo
:=
λ x0 .
add_SNo
(
exp_SNo_nat
(
CSNo_Re
x0
)
2
)
(
exp_SNo_nat
(
CSNo_Im
x0
)
2
)
Param
div_SNo
div_SNo
:
ι
→
ι
→
ι
Definition
recip_CSNo
recip_CSNo
:=
λ x0 .
SNo_pair
(
div_SNo
(
CSNo_Re
x0
)
(
abs_sqr_CSNo
x0
)
)
(
minus_SNo
(
div_SNo
(
CSNo_Im
x0
)
(
abs_sqr_CSNo
x0
)
)
)
Definition
div_CSNo
div_CSNo
:=
λ x0 x1 .
mul_CSNo
x0
(
recip_CSNo
x1
)
Theorem
CSNo_Complex_i
CSNo_Complex_i
:
CSNo
Complex_i
(proof)
Known
CD_minus_CD
CD_minus_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
(
CD_minus
x0
x1
x2
x3
)
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Theorem
CSNo_minus_CSNo
CSNo_minus_CSNo
:
∀ x0 .
CSNo
x0
⟶
CSNo
(
minus_CSNo
x0
)
(proof)
Known
CD_minus_proj0
CD_minus_proj0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_proj0
x0
x1
(
CD_minus
x0
x1
x2
x3
)
=
x2
(
CD_proj0
x0
x1
x3
)
Theorem
minus_CSNo_CRe
minus_CSNo_CRe
:
∀ x0 .
CSNo
x0
⟶
CSNo_Re
(
minus_CSNo
x0
)
=
minus_SNo
(
CSNo_Re
x0
)
(proof)
Known
CD_minus_proj1
CD_minus_proj1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_proj1
x0
x1
(
CD_minus
x0
x1
x2
x3
)
=
x2
(
CD_proj1
x0
x1
x3
)
Theorem
minus_CSNo_CIm
minus_CSNo_CIm
:
∀ x0 .
CSNo
x0
⟶
CSNo_Im
(
minus_CSNo
x0
)
=
minus_SNo
(
CSNo_Im
x0
)
(proof)
Known
CD_conj_CD
CD_conj_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_carr
x0
x1
(
CD_conj
x0
x1
x2
x3
x4
)
Theorem
CSNo_conj_CSNo
CSNo_conj_CSNo
:
∀ x0 .
CSNo
x0
⟶
CSNo
(
conj_CSNo
x0
)
(proof)
Known
CD_conj_proj0
CD_conj_proj0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_proj0
x0
x1
(
CD_conj
x0
x1
x2
x3
x4
)
=
x3
(
CD_proj0
x0
x1
x4
)
Theorem
conj_CSNo_CRe
conj_CSNo_CRe
:
∀ x0 .
CSNo
x0
⟶
CSNo_Re
(
conj_CSNo
x0
)
=
CSNo_Re
x0
(proof)
Known
CD_conj_proj1
CD_conj_proj1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_proj1
x0
x1
(
CD_conj
x0
x1
x2
x3
x4
)
=
x2
(
CD_proj1
x0
x1
x4
)
Theorem
conj_CSNo_CIm
conj_CSNo_CIm
:
∀ x0 .
CSNo
x0
⟶
CSNo_Im
(
conj_CSNo
x0
)
=
minus_SNo
(
CSNo_Im
x0
)
(proof)
Known
CD_add_CD
CD_add_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x1
(
x2
x3
x4
)
)
⟶
∀ x3 x4 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_carr
x0
x1
(
CD_add
x0
x1
x2
x3
x4
)
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Theorem
CSNo_add_CSNo
CSNo_add_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
(
add_CSNo
x0
x1
)
(proof)
Theorem
CSNo_add_CSNo_3
CSNo_add_CSNo_3
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
(
add_CSNo
x0
(
add_CSNo
x1
x2
)
)
(proof)
Known
CD_add_proj0
CD_add_proj0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x1
(
x2
x3
x4
)
)
⟶
∀ x3 x4 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_proj0
x0
x1
(
CD_add
x0
x1
x2
x3
x4
)
=
x2
(
CD_proj0
x0
x1
x3
)
(
CD_proj0
x0
x1
x4
)
Theorem
add_CSNo_CRe
add_CSNo_CRe
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo_Re
(
add_CSNo
x0
x1
)
=
add_SNo
(
CSNo_Re
x0
)
(
CSNo_Re
x1
)
(proof)
Known
CD_add_proj1
CD_add_proj1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x1
(
x2
x3
x4
)
)
⟶
∀ x3 x4 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_proj1
x0
x1
(
CD_add
x0
x1
x2
x3
x4
)
=
x2
(
CD_proj1
x0
x1
x3
)
(
CD_proj1
x0
x1
x4
)
Theorem
add_CSNo_CIm
add_CSNo_CIm
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo_Im
(
add_CSNo
x0
x1
)
=
add_SNo
(
CSNo_Im
x0
)
(
CSNo_Im
x1
)
(proof)
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Theorem
CSNo_mul_CSNo
CSNo_mul_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
(
mul_CSNo
x0
x1
)
(proof)
Theorem
CSNo_mul_CSNo_3
CSNo_mul_CSNo_3
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
(
mul_CSNo
x0
(
mul_CSNo
x1
x2
)
)
(proof)
Known
CD_mul_proj0
CD_mul_proj0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_proj0
x0
x1
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x4
(
x5
(
CD_proj0
x0
x1
x6
)
(
CD_proj0
x0
x1
x7
)
)
(
x2
(
x5
(
x3
(
CD_proj1
x0
x1
x7
)
)
(
CD_proj1
x0
x1
x6
)
)
)
Theorem
mul_CSNo_CRe
mul_CSNo_CRe
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo_Re
(
mul_CSNo
x0
x1
)
=
add_SNo
(
mul_SNo
(
CSNo_Re
x0
)
(
CSNo_Re
x1
)
)
(
minus_SNo
(
mul_SNo
(
CSNo_Im
x1
)
(
CSNo_Im
x0
)
)
)
(proof)
Known
CD_mul_proj1
CD_mul_proj1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_proj1
x0
x1
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x4
(
x5
(
CD_proj1
x0
x1
x7
)
(
CD_proj0
x0
x1
x6
)
)
(
x5
(
CD_proj1
x0
x1
x6
)
(
x3
(
CD_proj0
x0
x1
x7
)
)
)
Theorem
mul_CSNo_CIm
mul_CSNo_CIm
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo_Im
(
mul_CSNo
x0
x1
)
=
add_SNo
(
mul_SNo
(
CSNo_Im
x1
)
(
CSNo_Re
x0
)
)
(
mul_SNo
(
CSNo_Im
x0
)
(
CSNo_Re
x1
)
)
(proof)
Known
CD_proj0_F
CD_proj0_F
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
x1
0
⟶
∀ x2 .
x1
x2
⟶
CD_proj0
x0
x1
x2
=
x2
Theorem
SNo_Re
SNo_Re
:
∀ x0 .
SNo
x0
⟶
CSNo_Re
x0
=
x0
(proof)
Known
CD_proj1_F
CD_proj1_F
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
x1
0
⟶
∀ x2 .
x1
x2
⟶
CD_proj1
x0
x1
x2
=
0
Theorem
SNo_Im
SNo_Im
:
∀ x0 .
SNo
x0
⟶
CSNo_Im
x0
=
0
(proof)
Theorem
Re_0
Re_0
:
CSNo_Re
0
=
0
(proof)
Theorem
Im_0
Im_0
:
CSNo_Im
0
=
0
(proof)
Theorem
Re_1
Re_1
:
CSNo_Re
1
=
1
(proof)
Theorem
Im_1
Im_1
:
CSNo_Im
1
=
0
(proof)
Theorem
Re_i
Re_i
:
CSNo_Re
Complex_i
=
0
(proof)
Theorem
Im_i
Im_i
:
CSNo_Im
Complex_i
=
1
(proof)
Known
CD_conj_F_eq
CD_conj_F_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
x1
0
⟶
x2
0
=
0
⟶
∀ x3 :
ι → ι
.
∀ x4 .
x1
x4
⟶
CD_conj
x0
x1
x2
x3
x4
=
x3
x4
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Theorem
conj_CSNo_id_SNo
conj_CSNo_id_SNo
:
∀ x0 .
SNo
x0
⟶
conj_CSNo
x0
=
x0
(proof)
Theorem
conj_CSNo_0
conj_CSNo_0
:
conj_CSNo
0
=
0
(proof)
Theorem
conj_CSNo_1
conj_CSNo_1
:
conj_CSNo
1
=
1
(proof)
Theorem
conj_CSNo_i
conj_CSNo_i
:
conj_CSNo
Complex_i
=
minus_CSNo
Complex_i
(proof)
Known
CD_minus_F_eq
CD_minus_F_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
x1
0
⟶
x2
0
=
0
⟶
∀ x3 .
x1
x3
⟶
CD_minus
x0
x1
x2
x3
=
x2
x3
Theorem
minus_CSNo_minus_SNo
minus_CSNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
minus_CSNo
x0
=
minus_SNo
x0
(proof)
Theorem
minus_CSNo_0
minus_CSNo_0
:
minus_CSNo
0
=
0
(proof)
Known
CD_add_F_eq
CD_add_F_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
x1
0
⟶
x2
0
0
=
0
⟶
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
CD_add
x0
x1
x2
x3
x4
=
x2
x3
x4
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Theorem
add_CSNo_add_SNo
add_CSNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_CSNo
x0
x1
=
add_SNo
x0
x1
(proof)
Known
CD_mul_F_eq
CD_mul_F_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
x2
0
=
0
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
0
=
0
)
⟶
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
=
x5
x6
x7
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
mul_SNo_zeroL
mul_SNo_zeroL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
0
x0
=
0
Known
mul_SNo_zeroR
mul_SNo_zeroR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
0
=
0
Theorem
mul_CSNo_mul_SNo
mul_CSNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_CSNo
x0
x1
=
mul_SNo
x0
x1
(proof)
Known
CD_minus_invol
CD_minus_invol
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
(
∀ x3 .
x1
x3
⟶
x2
(
x2
x3
)
=
x3
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_minus
x0
x1
x2
(
CD_minus
x0
x1
x2
x3
)
=
x3
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Theorem
minus_CSNo_invol
minus_CSNo_invol
:
∀ x0 .
CSNo
x0
⟶
minus_CSNo
(
minus_CSNo
x0
)
=
x0
(proof)
Known
CD_conj_invol
CD_conj_invol
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x2
(
x2
x4
)
=
x4
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
(
x3
x4
)
=
x4
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_conj
x0
x1
x2
x3
(
CD_conj
x0
x1
x2
x3
x4
)
=
x4
Theorem
conj_CSNo_invol
conj_CSNo_invol
:
∀ x0 .
CSNo
x0
⟶
conj_CSNo
(
conj_CSNo
x0
)
=
x0
(proof)
Known
CD_conj_minus
CD_conj_minus
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
(
x2
x4
)
=
x2
(
x3
x4
)
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_conj
x0
x1
x2
x3
(
CD_minus
x0
x1
x2
x4
)
=
CD_minus
x0
x1
x2
(
CD_conj
x0
x1
x2
x3
x4
)
Theorem
conj_minus_CSNo
conj_minus_CSNo
:
∀ x0 .
CSNo
x0
⟶
conj_CSNo
(
minus_CSNo
x0
)
=
minus_CSNo
(
conj_CSNo
x0
)
(proof)
Known
CD_minus_add
CD_minus_add
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 x5 .
x1
x4
⟶
x1
x5
⟶
x1
(
x3
x4
x5
)
)
⟶
(
∀ x4 x5 .
x1
x4
⟶
x1
x5
⟶
x2
(
x3
x4
x5
)
=
x3
(
x2
x4
)
(
x2
x5
)
)
⟶
∀ x4 x5 .
CD_carr
x0
x1
x4
⟶
CD_carr
x0
x1
x5
⟶
CD_minus
x0
x1
x2
(
CD_add
x0
x1
x3
x4
x5
)
=
CD_add
x0
x1
x3
(
CD_minus
x0
x1
x2
x4
)
(
CD_minus
x0
x1
x2
x5
)
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Theorem
minus_add_CSNo
minus_add_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
minus_CSNo
(
add_CSNo
x0
x1
)
=
add_CSNo
(
minus_CSNo
x0
)
(
minus_CSNo
x1
)
(proof)
Known
CD_conj_add
CD_conj_add
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x1
x5
⟶
x1
(
x2
x5
)
)
⟶
(
∀ x5 .
x1
x5
⟶
x1
(
x3
x5
)
)
⟶
(
∀ x5 x6 .
x1
x5
⟶
x1
x6
⟶
x1
(
x4
x5
x6
)
)
⟶
(
∀ x5 x6 .
x1
x5
⟶
x1
x6
⟶
x2
(
x4
x5
x6
)
=
x4
(
x2
x5
)
(
x2
x6
)
)
⟶
(
∀ x5 x6 .
x1
x5
⟶
x1
x6
⟶
x3
(
x4
x5
x6
)
=
x4
(
x3
x5
)
(
x3
x6
)
)
⟶
∀ x5 x6 .
CD_carr
x0
x1
x5
⟶
CD_carr
x0
x1
x6
⟶
CD_conj
x0
x1
x2
x3
(
CD_add
x0
x1
x4
x5
x6
)
=
CD_add
x0
x1
x4
(
CD_conj
x0
x1
x2
x3
x5
)
(
CD_conj
x0
x1
x2
x3
x6
)
Theorem
conj_add_CSNo
conj_add_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
conj_CSNo
(
add_CSNo
x0
x1
)
=
add_CSNo
(
conj_CSNo
x0
)
(
conj_CSNo
x1
)
(proof)
Known
CD_add_com
CD_add_com
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x2
x3
x4
=
x2
x4
x3
)
⟶
∀ x3 x4 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_add
x0
x1
x2
x3
x4
=
CD_add
x0
x1
x2
x4
x3
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Theorem
add_CSNo_com
add_CSNo_com
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
add_CSNo
x0
x1
=
add_CSNo
x1
x0
(proof)
Known
CD_add_assoc
CD_add_assoc
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x1
(
x2
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x1
x3
⟶
x1
x4
⟶
x1
x5
⟶
x2
(
x2
x3
x4
)
x5
=
x2
x3
(
x2
x4
x5
)
)
⟶
∀ x3 x4 x5 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_carr
x0
x1
x5
⟶
CD_add
x0
x1
x2
(
CD_add
x0
x1
x2
x3
x4
)
x5
=
CD_add
x0
x1
x2
x3
(
CD_add
x0
x1
x2
x4
x5
)
Known
add_SNo_assoc
add_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
add_SNo
x0
x1
)
x2
Theorem
add_CSNo_assoc
add_CSNo_assoc
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
add_CSNo
(
add_CSNo
x0
x1
)
x2
=
add_CSNo
x0
(
add_CSNo
x1
x2
)
(proof)
Known
CD_add_0L
CD_add_0L
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
x1
0
⟶
(
∀ x3 .
x1
x3
⟶
x2
0
x3
=
x3
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_add
x0
x1
x2
0
x3
=
x3
Theorem
add_CSNo_0L
add_CSNo_0L
:
∀ x0 .
CSNo
x0
⟶
add_CSNo
0
x0
=
x0
(proof)
Known
CD_add_0R
CD_add_0R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
x1
0
⟶
(
∀ x3 .
x1
x3
⟶
x2
x3
0
=
x3
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_add
x0
x1
x2
x3
0
=
x3
Theorem
add_CSNo_0R
add_CSNo_0R
:
∀ x0 .
CSNo
x0
⟶
add_CSNo
x0
0
=
x0
(proof)
Known
CD_add_minus_linv
CD_add_minus_linv
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
(
x2
x4
)
x4
=
0
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_add
x0
x1
x3
(
CD_minus
x0
x1
x2
x4
)
x4
=
0
Known
add_SNo_minus_SNo_linv
add_SNo_minus_SNo_linv
:
∀ x0 .
SNo
x0
⟶
add_SNo
(
minus_SNo
x0
)
x0
=
0
Theorem
add_CSNo_minus_CSNo_linv
add_CSNo_minus_CSNo_linv
:
∀ x0 .
CSNo
x0
⟶
add_CSNo
(
minus_CSNo
x0
)
x0
=
0
(proof)
Known
CD_add_minus_rinv
CD_add_minus_rinv
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
x4
(
x2
x4
)
=
0
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_add
x0
x1
x3
x4
(
CD_minus
x0
x1
x2
x4
)
=
0
Known
add_SNo_minus_SNo_rinv
add_SNo_minus_SNo_rinv
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
(
minus_SNo
x0
)
=
0
Theorem
add_CSNo_minus_CSNo_rinv
add_CSNo_minus_CSNo_rinv
:
∀ x0 .
CSNo
x0
⟶
add_CSNo
x0
(
minus_CSNo
x0
)
=
0
(proof)
Known
CD_mul_0R
CD_mul_0R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x2
0
=
0
⟶
x3
0
=
0
⟶
x4
0
0
=
0
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
0
=
0
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
0
=
0
Theorem
mul_CSNo_0R
mul_CSNo_0R
:
∀ x0 .
CSNo
x0
⟶
mul_CSNo
x0
0
=
0
(proof)
Known
CD_mul_0L
CD_mul_0L
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
x2
0
=
0
⟶
x4
0
0
=
0
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
0
=
0
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_mul
x0
x1
x2
x3
x4
x5
0
x6
=
0
Theorem
mul_CSNo_0L
mul_CSNo_0L
:
∀ x0 .
CSNo
x0
⟶
mul_CSNo
0
x0
=
0
(proof)
Known
mul_SNo_oneR
mul_SNo_oneR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
1
=
x0
Theorem
mul_CSNo_1R
mul_CSNo_1R
:
∀ x0 .
CSNo
x0
⟶
mul_CSNo
x0
1
=
x0
(proof)
Known
CD_mul_1L
CD_mul_1L
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x1
1
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
x2
0
=
0
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
0
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
1
x6
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
1
=
x6
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_mul
x0
x1
x2
x3
x4
x5
1
x6
=
x6
Known
mul_SNo_oneL
mul_SNo_oneL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
1
x0
=
x0
Theorem
mul_CSNo_1L
mul_CSNo_1L
:
∀ x0 .
CSNo
x0
⟶
mul_CSNo
1
x0
=
x0
(proof)
Known
CD_conj_mul
CD_conj_mul
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x2
(
x2
x6
)
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x3
(
x3
x6
)
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x3
(
x2
x6
)
=
x2
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x3
(
x4
x6
x7
)
=
x4
(
x3
x6
)
(
x3
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x3
(
x5
x6
x7
)
=
x5
(
x3
x7
)
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
x6
(
x2
x7
)
=
x2
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
(
x2
x6
)
x7
=
x2
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_conj
x0
x1
x2
x3
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
=
CD_mul
x0
x1
x2
x3
x4
x5
(
CD_conj
x0
x1
x2
x3
x7
)
(
CD_conj
x0
x1
x2
x3
x6
)
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Known
mul_SNo_minus_distrR
mul_minus_SNo_distrR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
(
minus_SNo
x1
)
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
mul_SNo_minus_distrL
mul_SNo_minus_distrL
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
(
minus_SNo
x0
)
x1
=
minus_SNo
(
mul_SNo
x0
x1
)
Theorem
conj_mul_CSNo
conj_mul_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
conj_CSNo
(
mul_CSNo
x0
x1
)
=
mul_CSNo
(
conj_CSNo
x1
)
(
conj_CSNo
x0
)
(proof)
Known
CD_add_mul_distrL
CD_add_mul_distrL
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x3
(
x4
x6
x7
)
=
x4
(
x3
x6
)
(
x3
x7
)
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x4
(
x4
x6
x7
)
x8
=
x4
x6
(
x4
x7
x8
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x5
x6
(
x4
x7
x8
)
=
x4
(
x5
x6
x7
)
(
x5
x6
x8
)
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x5
(
x4
x6
x7
)
x8
=
x4
(
x5
x6
x8
)
(
x5
x7
x8
)
)
⟶
∀ x6 x7 x8 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_carr
x0
x1
x8
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
(
CD_add
x0
x1
x4
x7
x8
)
=
CD_add
x0
x1
x4
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x8
)
Known
mul_SNo_distrL
mul_SNo_distrL
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
mul_SNo_distrR
mul_SNo_distrR
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
(
add_SNo
x0
x1
)
x2
=
add_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x2
)
Theorem
mul_CSNo_distrL
mul_CSNo_distrL
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
x0
(
add_CSNo
x1
x2
)
=
add_CSNo
(
mul_CSNo
x0
x1
)
(
mul_CSNo
x0
x2
)
(proof)
Known
CD_add_mul_distrR
CD_add_mul_distrR
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x4
(
x4
x6
x7
)
x8
=
x4
x6
(
x4
x7
x8
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x5
x6
(
x4
x7
x8
)
=
x4
(
x5
x6
x7
)
(
x5
x6
x8
)
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x5
(
x4
x6
x7
)
x8
=
x4
(
x5
x6
x8
)
(
x5
x7
x8
)
)
⟶
∀ x6 x7 x8 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_carr
x0
x1
x8
⟶
CD_mul
x0
x1
x2
x3
x4
x5
(
CD_add
x0
x1
x4
x6
x7
)
x8
=
CD_add
x0
x1
x4
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x8
)
(
CD_mul
x0
x1
x2
x3
x4
x5
x7
x8
)
Theorem
mul_CSNo_distrR
mul_CSNo_distrR
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
(
add_CSNo
x0
x1
)
x2
=
add_CSNo
(
mul_CSNo
x0
x2
)
(
mul_CSNo
x1
x2
)
(proof)
Known
CD_minus_mul_distrR
CD_minus_mul_distrR
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x3
(
x2
x6
)
=
x2
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
x6
(
x2
x7
)
=
x2
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
(
x2
x6
)
x7
=
x2
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
(
CD_minus
x0
x1
x2
x7
)
=
CD_minus
x0
x1
x2
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
Theorem
minus_mul_CSNo_distrR
minus_mul_CSNo_distrR
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
mul_CSNo
x0
(
minus_CSNo
x1
)
=
minus_CSNo
(
mul_CSNo
x0
x1
)
(proof)
Known
CD_minus_mul_distrL
CD_minus_mul_distrL
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
x6
(
x2
x7
)
=
x2
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
(
x2
x6
)
x7
=
x2
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_mul
x0
x1
x2
x3
x4
x5
(
CD_minus
x0
x1
x2
x6
)
x7
=
CD_minus
x0
x1
x2
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
Theorem
minus_mul_CSNo_distrL
minus_mul_CSNo_distrL
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
mul_CSNo
(
minus_CSNo
x0
)
x1
=
minus_CSNo
(
mul_CSNo
x0
x1
)
(proof)
Theorem
exp_CSNo_nat_0
exp_CSNo_nat_0
:
∀ x0 .
exp_CSNo_nat
x0
0
=
1
(proof)
Theorem
exp_CSNo_nat_S
exp_CSNo_nat_S
:
∀ x0 x1 .
nat_p
x1
⟶
exp_CSNo_nat
x0
(
ordsucc
x1
)
=
mul_CSNo
x0
(
exp_CSNo_nat
x0
x1
)
(proof)
Theorem
exp_CSNo_nat_1
exp_CSNo_nat_1
:
∀ x0 .
CSNo
x0
⟶
exp_CSNo_nat
x0
1
=
x0
(proof)
Theorem
exp_CSNo_nat_2
exp_CSNo_nat_2
:
∀ x0 .
CSNo
x0
⟶
exp_CSNo_nat
x0
2
=
mul_CSNo
x0
x0
(proof)
Theorem
CSNo_exp_CSNo_nat
CSNo_exp_CSNo_nat
:
∀ x0 .
CSNo
x0
⟶
∀ x1 .
nat_p
x1
⟶
CSNo
(
exp_CSNo_nat
x0
x1
)
(proof)
Known
add_SNo_com_4_inner_mid
add_SNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
=
add_SNo
(
add_SNo
x0
x2
)
(
add_SNo
x1
x3
)
Theorem
add_SNo_rotate_4_0312
add_SNo_rotate_4_0312
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
=
add_SNo
(
add_SNo
x0
x3
)
(
add_SNo
x1
x2
)
(proof)
Theorem
mul_CSNo_com
mul_CSNo_com
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
mul_CSNo
x0
x1
=
mul_CSNo
x1
x0
(proof)
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Known
SNo_mul_SNo_3
SNo_mul_SNo_3
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
(
mul_SNo
x0
(
mul_SNo
x1
x2
)
)
Known
mul_SNo_com_3_0_1
mul_SNo_com_3_0_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
x1
(
mul_SNo
x0
x2
)
Theorem
mul_CSNo_assoc
mul_CSNo_assoc
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
x0
(
mul_CSNo
x1
x2
)
=
mul_CSNo
(
mul_CSNo
x0
x1
)
x2
(proof)
Theorem
Complex_i_sqr
Complex_i_sqr
:
mul_CSNo
Complex_i
Complex_i
=
minus_CSNo
1
(proof)
previous assets