Search for blocks/addresses/...
Proofgold Address
address
PUSVYbAJ5TV43CKZBYSvWtLoshuNzZEkfDh
total
0
mg
-
conjpub
-
current assets
9f694..
/
cc427..
bday:
5804
doc published by
Pr6Pc..
Param
explicit_Field
explicit_Field
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Known
f16ac..
:
∀ x0 x1 x2 .
∀ x3 x4 x5 x6 :
ι →
ι → ι
.
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x3
x7
x8
=
x5
x7
x8
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x7
x8
=
x6
x7
x8
)
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
explicit_Field
x0
x1
x2
x5
x6
Param
ap
ap
:
ι
→
ι
→
ι
Definition
decode_b
decode_b
:=
λ x0 x1 .
ap
(
ap
x0
x1
)
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
encode_b
encode_b
:
ι
→
CT2
ι
Definition
pack_b_b_e_e
pack_b_b_e_e
:=
λ x0 .
λ x1 x2 :
ι →
ι → ι
.
λ x3 x4 .
lam
5
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
(
encode_b
x0
x1
)
(
If_i
(
x5
=
2
)
(
encode_b
x0
x2
)
(
If_i
(
x5
=
3
)
x3
x4
)
)
)
)
Known
pack_b_b_e_e_1_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x1
x5
x6
=
decode_b
(
ap
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
1
)
x5
x6
Known
pack_b_b_e_e_2_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x2
x5
x6
=
decode_b
(
ap
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
2
)
x5
x6
Definition
field0
RealsStruct_carrier
:=
λ x0 .
ap
x0
0
Definition
field1b
RealsStruct_plus
:=
λ x0 .
decode_b
(
ap
x0
1
)
Definition
field2b
RealsStruct_mult
:=
λ x0 .
decode_b
(
ap
x0
2
)
Param
decode_r
decode_r
:
ι
→
ι
→
ι
→
ο
Definition
RealsStruct_leq
RealsStruct_leq
:=
λ x0 .
decode_r
(
ap
x0
3
)
Definition
field4
RealsStruct_zero
:=
λ x0 .
ap
x0
4
Definition
RealsStruct_one
RealsStruct_one
:=
λ x0 .
ap
x0
5
Definition
Field_of_RealsStruct
Field_of_RealsStruct
:=
λ x0 .
pack_b_b_e_e
(
field0
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
Param
explicit_Field_minus
explicit_Field_minus
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
Field_minus
Field_minus
:=
λ x0 x1 .
If_i
(
x1
∈
ap
x0
0
)
(
explicit_Field_minus
(
ap
x0
0
)
(
ap
x0
3
)
(
ap
x0
4
)
(
decode_b
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
x1
)
0
Known
Field_of_RealsStruct_0
Field_of_RealsStruct_0
:
∀ x0 .
ap
(
Field_of_RealsStruct
x0
)
0
=
field0
x0
Known
Field_of_RealsStruct_1
Field_of_RealsStruct_1
:
∀ x0 x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
ap
(
ap
(
ap
(
Field_of_RealsStruct
x0
)
1
)
x1
)
x2
=
field1b
x0
x1
x2
Known
Field_of_RealsStruct_2
Field_of_RealsStruct_2
:
∀ x0 x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
ap
(
ap
(
ap
(
Field_of_RealsStruct
x0
)
2
)
x1
)
x2
=
field2b
x0
x1
x2
Known
Field_of_RealsStruct_3
Field_of_RealsStruct_3
:
∀ x0 .
ap
(
Field_of_RealsStruct
x0
)
3
=
field4
x0
Known
Field_of_RealsStruct_4
Field_of_RealsStruct_4
:
∀ x0 .
ap
(
Field_of_RealsStruct
x0
)
4
=
RealsStruct_one
x0
Param
struct_b_b_e_e
struct_b_b_e_e
:
ι
→
ο
Known
pack_struct_b_b_e_e_I
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
x4
∈
x0
)
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
struct_b_b_e_e
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
Param
unpack_b_b_e_e_o
unpack_b_b_e_e_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ο
) →
ο
Known
unpack_b_b_e_e_o_eq
unpack_b_b_e_e_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
x0
x1
x6
x7
x4
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
unpack_b_b_e_e_o
(
pack_b_b_e_e
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
e08de..
:=
λ x0 x1 x2 x3 .
and
(
RealsStruct_leq
x1
x2
x3
)
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
Param
RealsStruct
RealsStruct
:
ι
→
ο
Param
encode_r
encode_r
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Definition
pack_b_b_r_e_e
pack_b_b_r_e_e
:=
λ x0 .
λ x1 x2 :
ι →
ι → ι
.
λ x3 :
ι →
ι → ο
.
λ x4 x5 .
lam
6
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
(
encode_b
x0
x1
)
(
If_i
(
x6
=
2
)
(
encode_b
x0
x2
)
(
If_i
(
x6
=
3
)
(
encode_r
x0
x3
)
(
If_i
(
x6
=
4
)
x4
x5
)
)
)
)
)
Known
RealsStruct_eta
RealsStruct_eta
:
∀ x0 .
RealsStruct
x0
⟶
x0
=
pack_b_b_r_e_e
(
field0
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
RealsStruct_leq
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
Param
explicit_Reals
explicit_Reals
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Known
RealsStruct_explicit_Reals
RealsStruct_explicit_Reals
:
∀ x0 .
RealsStruct
x0
⟶
explicit_Reals
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
RealsStruct_leq
x0
)
Known
RealsStruct_zero_In
RealsStruct_zero_In
:
∀ x0 .
RealsStruct
x0
⟶
field4
x0
∈
field0
x0
Known
RealsStruct_one_In
RealsStruct_one_In
:
∀ x0 .
RealsStruct
x0
⟶
RealsStruct_one
x0
∈
field0
x0
Known
RealsStruct_plus_clos
RealsStruct_plus_clos
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field1b
x0
x1
x2
∈
field0
x0
Known
RealsStruct_mult_clos
RealsStruct_mult_clos
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
x1
x2
∈
field0
x0
Known
RealsStruct_plus_assoc
RealsStruct_plus_assoc
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field1b
x0
x1
(
field1b
x0
x2
x3
)
=
field1b
x0
(
field1b
x0
x1
x2
)
x3
Known
RealsStruct_plus_com
RealsStruct_plus_com
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field1b
x0
x1
x2
=
field1b
x0
x2
x1
Known
RealsStruct_zero_L
RealsStruct_zero_L
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field1b
x0
(
field4
x0
)
x1
=
x1
Known
RealsStruct_mult_assoc
RealsStruct_mult_assoc
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field2b
x0
x1
(
field2b
x0
x2
x3
)
=
field2b
x0
(
field2b
x0
x1
x2
)
x3
Known
RealsStruct_mult_com
RealsStruct_mult_com
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
x1
x2
=
field2b
x0
x2
x1
Known
RealsStruct_one_L
RealsStruct_one_L
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field2b
x0
(
RealsStruct_one
x0
)
x1
=
x1
Known
RealsStruct_distr_L
RealsStruct_distr_L
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field2b
x0
x1
(
field1b
x0
x2
x3
)
=
field1b
x0
(
field2b
x0
x1
x2
)
(
field2b
x0
x1
x3
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
explicit_OrderedField
explicit_OrderedField
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Param
lt
lt
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ο
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Param
natOfOrderedField_p
natOfOrderedField_p
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ι
→
ο
Param
setexp
setexp
:
ι
→
ι
→
ι
Known
explicit_Reals_E
explicit_Reals_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 : ο .
(
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
lt
x0
x1
x2
x3
x4
x5
x1
x7
⟶
x5
x1
x8
⟶
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
(
x5
x8
(
x4
x10
x7
)
)
⟶
x9
)
⟶
x9
)
⟶
(
∀ x7 .
x7
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
∀ x8 .
x8
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
(
∀ x9 .
x9
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
and
(
x5
(
ap
x7
x9
)
(
ap
x8
x9
)
)
(
x5
(
ap
x7
x9
)
(
ap
x7
(
x3
x9
x2
)
)
)
)
(
x5
(
ap
x8
(
x3
x9
x2
)
)
(
ap
x8
x9
)
)
)
⟶
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
x0
)
(
∀ x11 .
x11
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
x5
(
ap
x7
x11
)
x10
)
(
x5
x10
(
ap
x8
x11
)
)
)
⟶
x9
)
⟶
x9
)
⟶
x6
)
⟶
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
x6
Param
iff
iff
:
ο
→
ο
→
ο
Known
explicit_OrderedField_E
explicit_OrderedField_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 : ο .
(
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x5
x7
x8
⟶
x5
x8
x9
⟶
x5
x7
x9
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
iff
(
and
(
x5
x7
x8
)
(
x5
x8
x7
)
)
(
x7
=
x8
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
or
(
x5
x7
x8
)
(
x5
x8
x7
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x5
x7
x8
⟶
x5
(
x3
x7
x9
)
(
x3
x8
x9
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x5
x1
x7
⟶
x5
x1
x8
⟶
x5
x1
(
x4
x7
x8
)
)
⟶
x6
)
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
x6
Theorem
RealsStruct_leq_linear
RealsStruct_leq_linear
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
or
(
RealsStruct_leq
x0
x1
x2
)
(
RealsStruct_leq
x0
x2
x1
)
(proof)
Known
RealsStruct_leq_plus
RealsStruct_leq_plus
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
RealsStruct_leq
x0
x1
x2
⟶
RealsStruct_leq
x0
(
field1b
x0
x1
x3
)
(
field1b
x0
x2
x3
)
Definition
RealsStruct_N
RealsStruct_N
:=
λ x0 .
Sep
(
field0
x0
)
(
natOfOrderedField_p
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
RealsStruct_leq
x0
)
)
Known
explicit_Field_of_RealsStruct
explicit_Field_of_RealsStruct
:
∀ x0 .
RealsStruct
x0
⟶
explicit_Field
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
Theorem
explicit_OrderedField_of_RealsStruct
explicit_OrderedField_of_RealsStruct
:
∀ x0 .
RealsStruct
x0
⟶
explicit_OrderedField
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
RealsStruct_leq
x0
)
(proof)
Param
struct_b_b_r_e_e
struct_b_b_r_e_e
:
ι
→
ο
Param
unpack_b_b_r_e_e_o
unpack_b_b_r_e_e_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ο
) →
ο
Definition
OrderedFieldStruct
struct_b_b_r_e_e_ordered_field
:=
λ x0 .
and
(
struct_b_b_r_e_e
x0
)
(
unpack_b_b_r_e_e_o
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 :
ι →
ι → ο
.
λ x5 x6 .
explicit_OrderedField
x1
x5
x6
x2
x3
x4
)
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
pack_struct_b_b_r_e_e_I
pack_struct_b_b_r_e_e_I
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
x4
∈
x0
)
⟶
∀ x3 :
ι →
ι → ο
.
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
struct_b_b_r_e_e
(
pack_b_b_r_e_e
x0
x1
x2
x3
x4
x5
)
Known
OrderedFieldStruct_unpack_eq
OrderedFieldStruct_unpack_eq
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
unpack_b_b_r_e_e_o
(
pack_b_b_r_e_e
x0
x1
x2
x3
x4
x5
)
(
λ x7 .
λ x8 x9 :
ι →
ι → ι
.
λ x10 :
ι →
ι → ο
.
λ x11 x12 .
explicit_OrderedField
x7
x11
x12
x8
x9
x10
)
=
explicit_OrderedField
x0
x4
x5
x1
x2
x3
Theorem
RealsStruct_OrderedField
RealsStruct_OrderedField
:
∀ x0 .
RealsStruct
x0
⟶
OrderedFieldStruct
x0
(proof)
Known
tuple_5_1_eq
tuple_5_1_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
1
=
x1
Known
tuple_6_1_eq
tuple_6_1_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
1
=
x1
Known
encode_b_ext
encode_b_ext
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
encode_b
x0
x1
=
encode_b
x0
x2
Known
decode_encode_b
decode_encode_b
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
decode_b
(
encode_b
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
Field_of_RealsStruct_1f
Field_of_RealsStruct_1f
:
∀ x0 .
RealsStruct
x0
⟶
(
λ x2 .
ap
(
ap
(
ap
(
Field_of_RealsStruct
x0
)
1
)
x2
)
)
=
field1b
x0
(proof)
Known
tuple_5_2_eq
tuple_5_2_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
2
=
x2
Known
tuple_6_2_eq
tuple_6_2_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
2
=
x2
Theorem
Field_of_RealsStruct_2f
Field_of_RealsStruct_2f
:
∀ x0 .
RealsStruct
x0
⟶
(
λ x2 .
ap
(
ap
(
ap
(
Field_of_RealsStruct
x0
)
2
)
x2
)
)
=
field2b
x0
(proof)
Theorem
explicit_Field_of_RealsStruct_2
explicit_Field_of_RealsStruct_2
:
∀ x0 .
RealsStruct
x0
⟶
explicit_Field
(
field0
x0
)
(
ap
(
Field_of_RealsStruct
x0
)
3
)
(
ap
(
Field_of_RealsStruct
x0
)
4
)
(
decode_b
(
ap
(
Field_of_RealsStruct
x0
)
1
)
)
(
decode_b
(
ap
(
Field_of_RealsStruct
x0
)
2
)
)
(proof)
Definition
Field
Field
:=
λ x0 .
and
(
struct_b_b_e_e
x0
)
(
unpack_b_b_e_e_o
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 x5 .
explicit_Field
x1
x4
x5
x2
x3
)
)
Known
prop_ext
prop_ext
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
=
x1
Known
iff_sym
iff_sym
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
iff
x1
x0
Known
explicit_Field_repindep
explicit_Field_repindep
:
∀ x0 x1 x2 .
∀ x3 x4 x5 x6 :
ι →
ι → ι
.
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x3
x7
x8
=
x5
x7
x8
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x7
x8
=
x6
x7
x8
)
⟶
iff
(
explicit_Field
x0
x1
x2
x3
x4
)
(
explicit_Field
x0
x1
x2
x5
x6
)
Theorem
Field_Field_of_RealsStruct
Field_Field_of_RealsStruct
:
∀ x0 .
RealsStruct
x0
⟶
Field
(
Field_of_RealsStruct
x0
)
(proof)
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Theorem
RealsStruct_minus_eq
RealsStruct_minus_eq
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
x1
=
explicit_Field_minus
(
field0
x0
)
(
ap
(
Field_of_RealsStruct
x0
)
3
)
(
ap
(
Field_of_RealsStruct
x0
)
4
)
(
decode_b
(
ap
(
Field_of_RealsStruct
x0
)
1
)
)
(
decode_b
(
ap
(
Field_of_RealsStruct
x0
)
2
)
)
x1
(proof)
Known
explicit_Field_minus_clos
explicit_Field_minus_clos
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x5
∈
x0
Theorem
RealsStruct_minus_clos
RealsStruct_minus_clos
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
x1
∈
field0
x0
(proof)
Known
explicit_Field_minus_R
explicit_Field_minus_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x3
x5
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x1
Theorem
RealsStruct_minus_R
RealsStruct_minus_R
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field1b
x0
x1
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
)
=
field4
x0
(proof)
Theorem
RealsStruct_minus_L
RealsStruct_minus_L
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field1b
x0
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
)
x1
=
field4
x0
(proof)
Known
explicit_Field_plus_cancelL
explicit_Field_plus_cancelL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
x6
=
x3
x5
x7
⟶
x6
=
x7
Theorem
RealsStruct_plus_cancelL
RealsStruct_plus_cancelL
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field1b
x0
x1
x2
=
field1b
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
RealsStruct_minus_eq2
RealsStruct_minus_eq2
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
x1
=
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x1
(proof)
Known
explicit_Field_plus_cancelR
explicit_Field_plus_cancelR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
x7
=
x3
x6
x7
⟶
x5
=
x6
Theorem
RealsStruct_plus_cancelR
RealsStruct_plus_cancelR
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field1b
x0
x1
x3
=
field1b
x0
x2
x3
⟶
x1
=
x2
(proof)
Theorem
RealsStruct_minus_invol
RealsStruct_minus_invol
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
)
=
x1
(proof)
Theorem
RealsStruct_minus_one_In
RealsStruct_minus_one_In
:
∀ x0 .
RealsStruct
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
(
RealsStruct_one
x0
)
∈
field0
x0
(proof)
Known
explicit_Field_zero_multR
explicit_Field_zero_multR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x5
x1
=
x1
Theorem
RealsStruct_zero_multR
RealsStruct_zero_multR
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field2b
x0
x1
(
field4
x0
)
=
field4
x0
(proof)
Theorem
RealsStruct_zero_multL
RealsStruct_zero_multL
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field2b
x0
(
field4
x0
)
x1
=
field4
x0
(proof)
Theorem
RealsStruct_minus_mult
RealsStruct_minus_mult
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
x1
=
field2b
x0
(
Field_minus
(
Field_of_RealsStruct
x0
)
(
RealsStruct_one
x0
)
)
x1
(proof)
Theorem
RealsStruct_minus_one_square
RealsStruct_minus_one_square
:
∀ x0 .
RealsStruct
x0
⟶
field2b
x0
(
Field_minus
(
Field_of_RealsStruct
x0
)
(
RealsStruct_one
x0
)
)
(
Field_minus
(
Field_of_RealsStruct
x0
)
(
RealsStruct_one
x0
)
)
=
RealsStruct_one
x0
(proof)
Known
explicit_Field_minus_square
explicit_Field_minus_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x4
x5
x5
Theorem
RealsStruct_minus_square
RealsStruct_minus_square
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field2b
x0
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
)
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
)
=
field2b
x0
x1
x1
(proof)
Theorem
RealsStruct_minus_zero
RealsStruct_minus_zero
:
∀ x0 .
RealsStruct
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
(
field4
x0
)
=
field4
x0
(proof)
Known
explicit_Field_dist_R
explicit_Field_dist_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
(
x3
x5
x6
)
x7
=
x3
(
x4
x5
x7
)
(
x4
x6
x7
)
Theorem
RealsStruct_dist_R
RealsStruct_dist_R
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field2b
x0
(
field1b
x0
x1
x2
)
x3
=
field1b
x0
(
field2b
x0
x1
x3
)
(
field2b
x0
x2
x3
)
(proof)
Theorem
RealsStruct_minus_plus_dist
RealsStruct_minus_plus_dist
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
(
field1b
x0
x1
x2
)
=
field1b
x0
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
)
(
Field_minus
(
Field_of_RealsStruct
x0
)
x2
)
(proof)
Theorem
RealsStruct_minus_mult_L
RealsStruct_minus_mult_L
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
)
x2
=
Field_minus
(
Field_of_RealsStruct
x0
)
(
field2b
x0
x1
x2
)
(proof)
Theorem
RealsStruct_minus_mult_R
RealsStruct_minus_mult_R
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
x1
(
Field_minus
(
Field_of_RealsStruct
x0
)
x2
)
=
Field_minus
(
Field_of_RealsStruct
x0
)
(
field2b
x0
x1
x2
)
(proof)
Known
explicit_Field_mult_zero_inv
explicit_Field_mult_zero_inv
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
=
x1
⟶
or
(
x5
=
x1
)
(
x6
=
x1
)
Theorem
RealsStruct_mult_zero_inv
RealsStruct_mult_zero_inv
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
x1
x2
=
field4
x0
⟶
or
(
x1
=
field4
x0
)
(
x2
=
field4
x0
)
(proof)
Theorem
RealsStruct_square_zero_inv
RealsStruct_square_zero_inv
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field2b
x0
x1
x1
=
field4
x0
⟶
x1
=
field4
x0
(proof)
Theorem
RealsStruct_minus_leq
RealsStruct_minus_leq
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_leq
x0
x1
x2
⟶
RealsStruct_leq
x0
(
Field_minus
(
Field_of_RealsStruct
x0
)
x2
)
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
)
(proof)
Known
explicit_OrderedField_square_nonneg
explicit_OrderedField_square_nonneg
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
x6
∈
x0
⟶
x5
x1
(
x4
x6
x6
)
Theorem
RealsStruct_square_nonneg
RealsStruct_square_nonneg
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
RealsStruct_leq
x0
(
field4
x0
)
(
field2b
x0
x1
x1
)
(proof)
Known
explicit_OrderedField_sum_squares_nonneg
explicit_OrderedField_sum_squares_nonneg
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x5
x1
(
x3
(
x4
x6
x6
)
(
x4
x7
x7
)
)
Theorem
RealsStruct_sum_squares_nonneg
RealsStruct_sum_squares_nonneg
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_leq
x0
(
field4
x0
)
(
field1b
x0
(
field2b
x0
x1
x1
)
(
field2b
x0
x2
x2
)
)
(proof)
Known
explicit_OrderedField_sum_nonneg_zero_inv
explicit_OrderedField_sum_nonneg_zero_inv
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x5
x1
x6
⟶
x5
x1
x7
⟶
x3
x6
x7
=
x1
⟶
and
(
x6
=
x1
)
(
x7
=
x1
)
Theorem
RealsStruct_sum_nonneg_zero_inv
RealsStruct_sum_nonneg_zero_inv
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_leq
x0
(
field4
x0
)
x1
⟶
RealsStruct_leq
x0
(
field4
x0
)
x2
⟶
field1b
x0
x1
x2
=
field4
x0
⟶
and
(
x1
=
field4
x0
)
(
x2
=
field4
x0
)
(proof)
Known
explicit_OrderedField_sum_squares_zero_inv
explicit_OrderedField_sum_squares_zero_inv
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
(
x4
x6
x6
)
(
x4
x7
x7
)
=
x1
⟶
and
(
x6
=
x1
)
(
x7
=
x1
)
Theorem
RealsStruct_sum_squares_zero_inv
RealsStruct_sum_squares_zero_inv
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field1b
x0
(
field2b
x0
x1
x1
)
(
field2b
x0
x2
x2
)
=
field4
x0
⟶
and
(
x1
=
field4
x0
)
(
x2
=
field4
x0
)
(proof)
Known
explicit_OrderedField_leq_zero_one
explicit_OrderedField_leq_zero_one
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
x5
x1
x2
Theorem
RealsStruct_leq_zero_one
RealsStruct_leq_zero_one
:
∀ x0 .
RealsStruct
x0
⟶
RealsStruct_leq
x0
(
field4
x0
)
(
RealsStruct_one
x0
)
(proof)
Param
explicit_Nats
explicit_Nats
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Known
explicit_Nats_natOfOrderedField
explicit_Nats_natOfOrderedField
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_Nats
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
x1
(
λ x6 .
x3
x6
x2
)
Theorem
RealsStruct_natOfOrderedField
RealsStruct_natOfOrderedField
:
∀ x0 .
RealsStruct
x0
⟶
explicit_Nats
(
RealsStruct_N
x0
)
(
field4
x0
)
(
λ x1 .
field1b
x0
x1
(
RealsStruct_one
x0
)
)
(proof)
Definition
RealsStruct_Npos
RealsStruct_Npos
:=
λ x0 .
{x1 ∈
RealsStruct_N
x0
|
x1
=
field4
x0
⟶
∀ x2 : ο .
x2
}
Known
explicit_PosNats_natOfOrderedField
explicit_PosNats_natOfOrderedField
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_Nats
{x6 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x6
=
x1
⟶
∀ x7 : ο .
x7
}
x2
(
λ x6 .
x3
x6
x2
)
Theorem
RealsStruct_PosNats_natOfOrderedField
RealsStruct_PosNats_natOfOrderedField
:
∀ x0 .
RealsStruct
x0
⟶
explicit_Nats
(
RealsStruct_Npos
x0
)
(
RealsStruct_one
x0
)
(
λ x1 .
field1b
x0
x1
(
RealsStruct_one
x0
)
)
(proof)
Definition
RealsStruct_Z
RealsStruct_Z
:=
λ x0 .
{x1 ∈
field0
x0
|
or
(
or
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
∈
RealsStruct_Npos
x0
)
(
x1
=
field4
x0
)
)
(
x1
∈
RealsStruct_Npos
x0
)
}
Definition
2a63f..
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
RealsStruct_Z
x0
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
RealsStruct_Npos
x0
)
(
field2b
x0
x5
x1
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
Definition
RealsStruct_Q
RealsStruct_Q
:=
λ x0 .
Sep
(
field0
x0
)
(
2a63f..
x0
)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
explicit_Nats_one_plus
explicit_Nats_one_plus
:
ι
→
ι
→
(
ι
→
ι
) →
ι
→
ι
→
ι
Param
explicit_Nats_one_mult
explicit_Nats_one_mult
:
ι
→
ι
→
(
ι
→
ι
) →
ι
→
ι
→
ι
Known
explicit_OrderedField_Npos_props
explicit_OrderedField_Npos_props
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 : ο .
(
{x7 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x7
=
x1
⟶
∀ x8 : ο .
x8
}
⊆
x0
⟶
explicit_Nats
{x7 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x7
=
x1
⟶
∀ x8 : ο .
x8
}
x2
(
λ x7 .
x3
x7
x2
)
⟶
x2
∈
{x7 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x7
=
x1
⟶
∀ x8 : ο .
x8
}
⟶
(
∀ x7 .
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
⟶
x3
x7
x2
=
x2
⟶
∀ x8 : ο .
x8
)
⟶
(
∀ x7 .
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
⟶
∀ x8 :
ι → ο
.
x8
x2
⟶
(
∀ x9 .
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
⟶
x8
(
x3
x9
x2
)
)
⟶
x8
x7
)
⟶
(
∀ x7 .
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
⟶
∀ x8 .
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
⟶
explicit_Nats_one_plus
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
x2
(
λ x10 .
x3
x10
x2
)
x7
x8
=
x3
x7
x8
)
⟶
(
∀ x7 .
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
⟶
∀ x8 .
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
⟶
explicit_Nats_one_mult
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
x2
(
λ x10 .
x3
x10
x2
)
x7
x8
=
x4
x7
x8
)
⟶
(
∀ x7 .
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
⟶
∀ x8 .
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
⟶
x3
x7
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
⟶
(
∀ x7 .
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
⟶
∀ x8 .
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
⟶
x4
x7
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
⟶
x6
)
⟶
x6
Theorem
RealsStruct_Npos_props
RealsStruct_Npos_props
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 : ο .
(
RealsStruct_Npos
x0
⊆
field0
x0
⟶
explicit_Nats
(
RealsStruct_Npos
x0
)
(
RealsStruct_one
x0
)
(
λ x2 .
field1b
x0
x2
(
RealsStruct_one
x0
)
)
⟶
RealsStruct_one
x0
∈
RealsStruct_Npos
x0
⟶
(
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
field1b
x0
x2
(
RealsStruct_one
x0
)
=
RealsStruct_one
x0
⟶
∀ x3 : ο .
x3
)
⟶
(
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
∀ x3 :
ι → ο
.
x3
(
RealsStruct_one
x0
)
⟶
(
∀ x4 .
x4
∈
RealsStruct_Npos
x0
⟶
x3
(
field1b
x0
x4
(
RealsStruct_one
x0
)
)
)
⟶
x3
x2
)
⟶
(
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
∀ x3 .
x3
∈
RealsStruct_Npos
x0
⟶
explicit_Nats_one_plus
(
RealsStruct_Npos
x0
)
(
RealsStruct_one
x0
)
(
λ x5 .
field1b
x0
x5
(
RealsStruct_one
x0
)
)
x2
x3
=
field1b
x0
x2
x3
)
⟶
(
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
∀ x3 .
x3
∈
RealsStruct_Npos
x0
⟶
explicit_Nats_one_mult
(
RealsStruct_Npos
x0
)
(
RealsStruct_one
x0
)
(
λ x5 .
field1b
x0
x5
(
RealsStruct_one
x0
)
)
x2
x3
=
field2b
x0
x2
x3
)
⟶
(
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
∀ x3 .
x3
∈
RealsStruct_Npos
x0
⟶
field1b
x0
x2
x3
∈
RealsStruct_Npos
x0
)
⟶
(
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
∀ x3 .
x3
∈
RealsStruct_Npos
x0
⟶
field2b
x0
x2
x3
∈
RealsStruct_Npos
x0
)
⟶
x1
)
⟶
x1
(proof)
Theorem
RealsStruct_Npos_R
RealsStruct_Npos_R
:
∀ x0 .
RealsStruct
x0
⟶
RealsStruct_Npos
x0
⊆
field0
x0
(proof)
Theorem
RealsStruct_one_Npos
RealsStruct_one_Npos
:
∀ x0 .
RealsStruct
x0
⟶
RealsStruct_one
x0
∈
RealsStruct_Npos
x0
(proof)
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
35134..
:
∀ x0 .
RealsStruct
x0
⟶
RealsStruct_Z
x0
=
{x2 ∈
field0
x0
|
or
(
or
(
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x2
∈
RealsStruct_Npos
x0
)
(
x2
=
field4
x0
)
)
(
x2
∈
RealsStruct_Npos
x0
)
}
(proof)
Known
explicit_OrderedField_Z_props
explicit_OrderedField_Z_props
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 : ο .
(
(
∀ x7 .
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
{x8 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
(
x8
=
x1
)
)
(
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
}
)
⟶
x1
∈
{x7 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
(
x7
=
x1
)
)
(
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
}
⟶
{x7 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x7
=
x1
⟶
∀ x8 : ο .
x8
}
⊆
{x7 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
(
x7
=
x1
)
)
(
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
}
⟶
{x7 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
(
x7
=
x1
)
)
(
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
}
⊆
x0
⟶
(
∀ x7 .
x7
∈
{x8 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
(
x8
=
x1
)
)
(
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
}
⟶
∀ x8 : ο .
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
⟶
x8
)
⟶
(
x7
=
x1
⟶
x8
)
⟶
(
x7
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
⟶
x8
)
⟶
x8
)
⟶
x2
∈
{x7 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
(
x7
=
x1
)
)
(
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
}
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x2
∈
{x7 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
(
x7
=
x1
)
)
(
x7
∈
{x8 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x8
=
x1
⟶
∀ x9 : ο .
x9
}
)
}
⟶
(
∀ x7 .
x7
∈
{x8 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
(
x8
=
x1
)
)
(
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
}
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
{x8 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
(
x8
=
x1
)
)
(
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
}
)
⟶
(
∀ x7 .
x7
∈
{x8 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
(
x8
=
x1
)
)
(
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
}
⟶
∀ x8 .
x8
∈
{x9 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
(
x9
=
x1
)
)
(
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
}
⟶
x3
x7
x8
∈
{x9 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
(
x9
=
x1
)
)
(
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
}
)
⟶
(
∀ x7 .
x7
∈
{x8 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
(
x8
=
x1
)
)
(
x8
∈
{x9 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x9
=
x1
⟶
∀ x10 : ο .
x10
}
)
}
⟶
∀ x8 .
x8
∈
{x9 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
(
x9
=
x1
)
)
(
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
}
⟶
x4
x7
x8
∈
{x9 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
(
x9
=
x1
)
)
(
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
}
)
⟶
x6
)
⟶
x6
Theorem
RealsStruct_Z_props
RealsStruct_Z_props
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 : ο .
(
(
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
x2
∈
RealsStruct_Z
x0
)
⟶
field4
x0
∈
RealsStruct_Z
x0
⟶
RealsStruct_Npos
x0
⊆
RealsStruct_Z
x0
⟶
RealsStruct_Z
x0
⊆
field0
x0
⟶
(
∀ x2 .
x2
∈
RealsStruct_Z
x0
⟶
∀ x3 : ο .
(
Field_minus
(
Field_of_RealsStruct
x0
)
x2
∈
RealsStruct_Npos
x0
⟶
x3
)
⟶
(
x2
=
field4
x0
⟶
x3
)
⟶
(
x2
∈
RealsStruct_Npos
x0
⟶
x3
)
⟶
x3
)
⟶
RealsStruct_one
x0
∈
RealsStruct_Z
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
(
RealsStruct_one
x0
)
∈
RealsStruct_Z
x0
⟶
(
∀ x2 .
x2
∈
RealsStruct_Z
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
x2
∈
RealsStruct_Z
x0
)
⟶
(
∀ x2 .
x2
∈
RealsStruct_Z
x0
⟶
∀ x3 .
x3
∈
RealsStruct_Z
x0
⟶
field1b
x0
x2
x3
∈
RealsStruct_Z
x0
)
⟶
(
∀ x2 .
x2
∈
RealsStruct_Z
x0
⟶
∀ x3 .
x3
∈
RealsStruct_Z
x0
⟶
field2b
x0
x2
x3
∈
RealsStruct_Z
x0
)
⟶
x1
)
⟶
x1
(proof)
Theorem
0eb6e..
:
∀ x0 .
RealsStruct
x0
⟶
RealsStruct_Q
x0
=
{x2 ∈
field0
x0
|
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
{x5 ∈
field0
x0
|
or
(
or
(
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x5
∈
RealsStruct_Npos
x0
)
(
x5
=
field4
x0
)
)
(
x5
∈
RealsStruct_Npos
x0
)
}
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
RealsStruct_Npos
x0
)
(
field2b
x0
x6
x2
=
x4
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
}
(proof)
Theorem
RealsStruct_neg_Z
RealsStruct_neg_Z
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
RealsStruct_Npos
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
x1
∈
RealsStruct_Z
x0
(proof)
Theorem
RealsStruct_zero_Z
RealsStruct_zero_Z
:
∀ x0 .
RealsStruct
x0
⟶
field4
x0
∈
RealsStruct_Z
x0
(proof)
Theorem
RealsStruct_Npos_Z
RealsStruct_Npos_Z
:
∀ x0 .
RealsStruct
x0
⟶
RealsStruct_Npos
x0
⊆
RealsStruct_Z
x0
(proof)
Theorem
RealsStruct_Z_R
RealsStruct_Z_R
:
∀ x0 .
RealsStruct
x0
⟶
RealsStruct_Z
x0
⊆
field0
x0
(proof)
Definition
explicit_OrderedField_rationalp
explicit_OrderedField_rationalp
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
λ x6 .
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
{x9 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
(
x9
=
x1
)
)
(
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
}
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
{x11 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x11
=
x1
⟶
∀ x12 : ο .
x12
}
)
(
x4
x10
x6
=
x8
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
Known
explicit_OrderedField_Q_props
explicit_OrderedField_Q_props
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 : ο .
(
Sep
x0
(
explicit_OrderedField_rationalp
x0
x1
x2
x3
x4
x5
)
⊆
x0
⟶
(
∀ x7 .
x7
∈
Sep
x0
(
explicit_OrderedField_rationalp
x0
x1
x2
x3
x4
x5
)
⟶
∀ x8 : ο .
(
x7
∈
x0
⟶
∀ x9 .
x9
∈
{x10 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x10
∈
{x11 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x11
=
x1
⟶
∀ x12 : ο .
x12
}
)
(
x10
=
x1
)
)
(
x10
∈
{x11 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x11
=
x1
⟶
∀ x12 : ο .
x12
}
)
}
⟶
∀ x10 .
x10
∈
{x11 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x11
=
x1
⟶
∀ x12 : ο .
x12
}
⟶
x4
x10
x7
=
x9
⟶
x8
)
⟶
x8
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
{x9 ∈
x0
|
or
(
or
(
explicit_Field_minus
x0
x1
x2
x3
x4
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
(
x9
=
x1
)
)
(
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
)
}
⟶
∀ x9 .
x9
∈
{x10 ∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
|
x10
=
x1
⟶
∀ x11 : ο .
x11
}
⟶
x4
x9
x7
=
x8
⟶
x7
∈
Sep
x0
(
explicit_OrderedField_rationalp
x0
x1
x2
x3
x4
x5
)
)
⟶
x6
)
⟶
x6
Theorem
RealsStruct_Q_props
RealsStruct_Q_props
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 : ο .
(
RealsStruct_Q
x0
⊆
field0
x0
⟶
(
∀ x2 .
x2
∈
RealsStruct_Q
x0
⟶
∀ x3 : ο .
(
x2
∈
field0
x0
⟶
∀ x4 .
x4
∈
RealsStruct_Z
x0
⟶
∀ x5 .
x5
∈
RealsStruct_Npos
x0
⟶
field2b
x0
x5
x2
=
x4
⟶
x3
)
⟶
x3
)
⟶
(
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
RealsStruct_Z
x0
⟶
∀ x4 .
x4
∈
RealsStruct_Npos
x0
⟶
field2b
x0
x4
x2
=
x3
⟶
x2
∈
RealsStruct_Q
x0
)
⟶
x1
)
⟶
x1
(proof)
Theorem
RealsStruct_Q_R
RealsStruct_Q_R
:
∀ x0 .
RealsStruct
x0
⟶
RealsStruct_Q
x0
⊆
field0
x0
(proof)
Theorem
RealsStruct_Z_Q
RealsStruct_Z_Q
:
∀ x0 .
RealsStruct
x0
⟶
RealsStruct_Z
x0
⊆
RealsStruct_Q
x0
(proof)
previous assets