current assets |
---|
6585d../0c6a0.. bday: 11715 doc published by PrGVS..Known bfa6d..Loop_with_defs_E : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι → ι → ι . ∀ x7 : ι → ι → ι . ∀ x8 x9 : ι → ι → ι → ι . ∀ x10 x11 x12 x13 : ι → ι → ι . Loop_with_defs x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ ∀ x14 : ο . (Loop x0 x1 x2 x3 x4 ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x5 x15 x16 = x2 (x1 x16 x15) (x1 x15 x16)) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ x6 x15 x16 x17 = x2 (x1 x15 (x1 x16 x17)) (x1 (x1 x15 x16) x17)) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ and (and (and (and (x7 x15 x16 = x2 x15 (x1 x16 x15)) (x10 x15 x16 = x1 x15 (x1 x16 (x2 x15 x4)))) (x11 x15 x16 = x1 (x1 (x3 x4 x15) x16) x15)) (x12 x15 x16 = x1 (x2 x15 x16) (x2 (x2 x15 x4) x4))) (x13 x15 x16 = x1 (x3 x4 (x3 x4 x15)) (x3 x16 x15))) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ and (x8 x15 x16 x17 = x2 (x1 x16 x15) (x1 x16 (x1 x15 x17))) (x9 x15 x16 x17 = x3 (x1 (x1 x17 x15) x16) (x1 x15 x16))) ⟶ x14) ⟶ x14Known bca1a..LoopE : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . Loop x0 x1 x2 x3 x4 ⟶ ∀ x5 : ο . (binop_on x0 x1 ⟶ binop_on x0 x2 ⟶ binop_on x0 x3 ⟶ (∀ x6 . In x6 x0 ⟶ and (x1 x4 x6 = x6) (x1 x6 x4 = x6)) ⟶ (∀ x6 . In x6 x0 ⟶ ∀ x7 . In x7 x0 ⟶ and (and (and (x2 x6 (x1 x6 x7) = x7) (x1 x6 (x2 x6 x7) = x7)) (x3 (x1 x6 x7) x7 = x6)) (x1 (x3 x6 x7) x7 = x6)) ⟶ x5) ⟶ x5Known c4530..binop_on_def : binop_on = λ x1 . λ x2 : ι → ι → ι . ∀ x3 . In x3 x1 ⟶ ∀ x4 . In x4 x1 ⟶ In (x2 x3 x4) x1Known andEandE : ∀ x0 x1 : ο . and x0 x1 ⟶ ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Theorem 00c7f.. : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι → ι → ι . ∀ x7 : ι → ι → ι . ∀ x8 x9 : ι → ι → ι → ι . ∀ x10 x11 x12 x13 : ι → ι → ι . Loop_with_defs x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ In x4 x0 ⟶ ∀ x14 : ο . ((∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ In (x1 x15 x16) x0) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ In (x2 x15 x16) x0) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ In (x3 x15 x16) x0) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ In (x7 x15 x16) x0) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ In (x8 x15 x16 x17) x0) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ In (x9 x15 x16 x17) x0) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ In (x10 x15 x16) x0) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ In (x11 x15 x16) x0) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ In (x12 x15 x16) x0) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ In (x13 x15 x16) x0) ⟶ (∀ x15 . In x15 x0 ⟶ x1 x4 x15 = x15) ⟶ (∀ x15 . In x15 x0 ⟶ x1 x15 x4 = x15) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x2 x15 (x1 x15 x16) = x16) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x1 x15 (x2 x15 x16) = x16) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x3 (x1 x15 x16) x16 = x15) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x1 (x3 x15 x16) x16 = x15) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ x1 x15 x16 = x1 x15 x17 ⟶ x16 = x17) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ x1 x15 x16 = x1 x17 x16 ⟶ x15 = x17) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x5 x15 x16 = x2 (x1 x16 x15) (x1 x15 x16)) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ x6 x15 x16 x17 = x2 (x1 x15 (x1 x16 x17)) (x1 (x1 x15 x16) x17)) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x7 x15 x16 = x2 x15 (x1 x16 x15)) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x10 x15 x16 = x1 x15 (x1 x16 (x2 x15 x4))) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x11 x15 x16 = x1 (x1 (x3 x4 x15) x16) x15) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x12 x15 x16 = x1 (x2 x15 x16) (x2 (x2 x15 x4) x4)) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x13 x15 x16 = x1 (x3 x4 (x3 x4 x15)) (x3 x16 x15)) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ x8 x15 x16 x17 = x2 (x1 x16 x15) (x1 x16 (x1 x15 x17))) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ x9 x15 x16 x17 = x3 (x1 (x1 x17 x15) x16) (x1 x15 x16)) ⟶ x14) ⟶ x14 (proof)Theorem 0fc9f.. : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι → ι → ι . ∀ x7 : ι → ι → ι . ∀ x8 x9 : ι → ι → ι → ι . ∀ x10 x11 x12 x13 : ι → ι → ι . Loop_with_defs x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ In x4 x0 ⟶ ∀ x14 : ο . ((∀ x15 . In x15 x0 ⟶ x2 x4 x15 = x15) ⟶ (∀ x15 . In x15 x0 ⟶ x2 x15 x15 = x4) ⟶ (∀ x15 . In x15 x0 ⟶ x3 x15 x4 = x15) ⟶ (∀ x15 . In x15 x0 ⟶ x3 x15 x15 = x4) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x8 x4 x15 x16 = x16) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x8 x15 x4 x16 = x16) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x9 x4 x15 x16 = x16) ⟶ (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x9 x15 x4 x16 = x16) ⟶ (∀ x15 . In x15 x0 ⟶ x7 x4 x15 = x15) ⟶ (∀ x15 . In x15 x0 ⟶ x10 x4 x15 = x15) ⟶ (∀ x15 . In x15 x0 ⟶ x11 x4 x15 = x15) ⟶ (∀ x15 . In x15 x0 ⟶ x12 x4 x15 = x15) ⟶ (∀ x15 . In x15 x0 ⟶ x13 x4 x15 = x15) ⟶ x14) ⟶ x14 (proof)Known 1449b..Loop_with_defs_cex1_E : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι → ι → ι . ∀ x7 : ι → ι → ι . ∀ x8 x9 : ι → ι → ι → ι . ∀ x10 x11 x12 x13 : ι → ι → ι . Loop_with_defs_cex1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ ∀ x14 : ο . (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ Loop_with_defs x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ not (x5 (x1 (x2 (x8 x16 x17 x15) x4) x15) x18 = x4) ⟶ x14) ⟶ x14Known notEnotE : ∀ x0 : ο . not x0 ⟶ x0 ⟶ FalseTheorem b5371.. : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι → ι → ι . ∀ x7 : ι → ι → ι . ∀ x8 x9 : ι → ι → ι → ι . ∀ x10 x11 x12 x13 : ι → ι → ι . Loop_with_defs_cex1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ In x4 x0 ⟶ ((∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ In (x1 x14 x15) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ In (x2 x14 x15) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ In (x3 x14 x15) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ In (x7 x14 x15) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ In (x8 x14 x15 x16) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ In (x9 x14 x15 x16) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ In (x10 x14 x15) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ In (x11 x14 x15) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ In (x12 x14 x15) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ In (x13 x14 x15) x0) ⟶ (∀ x14 . In x14 x0 ⟶ x1 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x1 x14 x4 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x2 x14 (x1 x14 x15) = x15) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x1 x14 (x2 x14 x15) = x15) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x3 (x1 x14 x15) x15 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x1 (x3 x14 x15) x15 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x1 x14 x15 = x1 x14 x16 ⟶ x15 = x16) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x1 x14 x15 = x1 x16 x15 ⟶ x14 = x16) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x5 x14 x15 = x2 (x1 x15 x14) (x1 x14 x15)) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x6 x14 x15 x16 = x2 (x1 x14 (x1 x15 x16)) (x1 (x1 x14 x15) x16)) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x7 x14 x15 = x2 x14 (x1 x15 x14)) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x10 x14 x15 = x1 x14 (x1 x15 (x2 x14 x4))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x11 x14 x15 = x1 (x1 (x3 x4 x14) x15) x14) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x12 x14 x15 = x1 (x2 x14 x15) (x2 (x2 x14 x4) x4)) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x13 x14 x15 = x1 (x3 x4 (x3 x4 x14)) (x3 x15 x14)) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x8 x14 x15 x16 = x2 (x1 x15 x14) (x1 x15 (x1 x14 x16))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x9 x14 x15 x16 = x3 (x1 (x1 x16 x14) x15) (x1 x14 x15)) ⟶ (∀ x14 . In x14 x0 ⟶ x2 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x2 x14 x14 = x4) ⟶ (∀ x14 . In x14 x0 ⟶ x3 x14 x4 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x3 x14 x14 = x4) ⟶ (∀ x14 . In x14 x0 ⟶ x7 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x10 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x11 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x12 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x13 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x8 x4 x14 x15 = x15) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x8 x14 x4 x15 = x15) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x9 x4 x14 x15 = x15) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x9 x14 x4 x15 = x15) ⟶ ∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x1 x14 x15 = x1 x15 x14) ⟶ False (proof)Known 9c580..Loop_with_defs_cex2_E : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι → ι → ι . ∀ x7 : ι → ι → ι . ∀ x8 x9 : ι → ι → ι → ι . ∀ x10 x11 x12 x13 : ι → ι → ι . Loop_with_defs_cex2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ ∀ x14 : ο . (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ Loop_with_defs x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ not (x6 x19 (x1 (x3 x4 x15) (x9 x16 x17 x15)) x18 = x4) ⟶ x14) ⟶ x14Theorem 7c609.. : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι → ι → ι . ∀ x7 : ι → ι → ι . ∀ x8 x9 : ι → ι → ι → ι . ∀ x10 x11 x12 x13 : ι → ι → ι . Loop_with_defs_cex2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ In x4 x0 ⟶ ((∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ In (x1 x14 x15) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ In (x2 x14 x15) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ In (x3 x14 x15) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ In (x7 x14 x15) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ In (x8 x14 x15 x16) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ In (x9 x14 x15 x16) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ In (x10 x14 x15) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ In (x11 x14 x15) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ In (x12 x14 x15) x0) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ In (x13 x14 x15) x0) ⟶ (∀ x14 . In x14 x0 ⟶ x1 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x1 x14 x4 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x2 x14 (x1 x14 x15) = x15) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x1 x14 (x2 x14 x15) = x15) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x3 (x1 x14 x15) x15 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x1 (x3 x14 x15) x15 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x1 x14 x15 = x1 x14 x16 ⟶ x15 = x16) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x1 x14 x15 = x1 x16 x15 ⟶ x14 = x16) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x5 x14 x15 = x2 (x1 x15 x14) (x1 x14 x15)) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x6 x14 x15 x16 = x2 (x1 x14 (x1 x15 x16)) (x1 (x1 x14 x15) x16)) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x7 x14 x15 = x2 x14 (x1 x15 x14)) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x10 x14 x15 = x1 x14 (x1 x15 (x2 x14 x4))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x11 x14 x15 = x1 (x1 (x3 x4 x14) x15) x14) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x12 x14 x15 = x1 (x2 x14 x15) (x2 (x2 x14 x4) x4)) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x13 x14 x15 = x1 (x3 x4 (x3 x4 x14)) (x3 x15 x14)) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x8 x14 x15 x16 = x2 (x1 x15 x14) (x1 x15 (x1 x14 x16))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x9 x14 x15 x16 = x3 (x1 (x1 x16 x14) x15) (x1 x14 x15)) ⟶ (∀ x14 . In x14 x0 ⟶ x2 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x2 x14 x14 = x4) ⟶ (∀ x14 . In x14 x0 ⟶ x3 x14 x4 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x3 x14 x14 = x4) ⟶ (∀ x14 . In x14 x0 ⟶ x7 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x10 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x11 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x12 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ x13 x4 x14 = x14) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x8 x4 x14 x15 = x15) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x8 x14 x4 x15 = x15) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x9 x4 x14 x15 = x15) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ x9 x14 x4 x15 = x15) ⟶ ∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x1 x14 (x1 x15 x16) = x1 (x1 x14 x15) x16) ⟶ False (proof)Theorem f_eq_if_equal_i_i : ∀ x0 : ι → ι . ∀ x1 x2 . x1 = x2 ⟶ x0 x1 = x0 x2 (proof)Theorem 0cea0.. : ∀ x0 : ι → ι . ∀ x1 x2 . x1 = x2 ⟶ x0 x2 = x0 x1 (proof)Theorem 68ce2.. : ∀ x0 x1 . (x0 = x1 ⟶ False) ⟶ x1 = x0 ⟶ False (proof)Theorem bb4b2.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . In x2 x0 ⟶ ∀ x3 . In x3 x0 ⟶ In (x1 x2 x3) x0) ⟶ ∀ x2 : ι → ι → ι . (∀ x3 . In x3 x0 ⟶ ∀ x4 . In x4 x0 ⟶ In (x2 x3 x4) x0) ⟶ ∀ x3 : ι → ι → ι → ι . (∀ x4 . In x4 x0 ⟶ ∀ x5 . In x5 x0 ⟶ ∀ x6 . In x6 x0 ⟶ In (x3 x4 x5 x6) x0) ⟶ ∀ x4 . In x4 x0 ⟶ ∀ x5 . In x5 x0 ⟶ ∀ x6 : ι → ι → ι → ι . (∀ x7 . In x7 x0 ⟶ ∀ x8 . In x8 x0 ⟶ ∀ x9 . In x9 x0 ⟶ In (x6 x7 x8 x9) x0) ⟶ ∀ x7 . In x7 x0 ⟶ ∀ x8 : ι → ι → ι . (∀ x9 . In x9 x0 ⟶ ∀ x10 . In x10 x0 ⟶ In (x8 x9 x10) x0) ⟶ ∀ x9 : ι → ι → ι . (∀ x10 . In x10 x0 ⟶ ∀ x11 . In x11 x0 ⟶ In (x9 x10 x11) x0) ⟶ ∀ x10 : ι → ι → ι . (∀ x11 . In x11 x0 ⟶ ∀ x12 . In x12 x0 ⟶ In (x10 x11 x12) x0) ⟶ (∀ x11 . In x11 x0 ⟶ ∀ x12 . In x12 x0 ⟶ (x10 x11 (x9 x11 x12) = x12 ⟶ False) ⟶ False) ⟶ (∀ x11 . In x11 x0 ⟶ ∀ x12 . In x12 x0 ⟶ (x1 x11 x12 = x9 x11 (x10 x12 x11) ⟶ False) ⟶ False) ⟶ (∀ x11 . In x11 x0 ⟶ (x8 x7 x11 = x11 ⟶ False) ⟶ False) ⟶ (∀ x11 . In x11 x0 ⟶ (x2 x7 x11 = x11 ⟶ False) ⟶ False) ⟶ (∀ x11 . In x11 x0 ⟶ ∀ x12 . In x12 x0 ⟶ (x6 x7 x11 x12 = x12 ⟶ False) ⟶ False) ⟶ (∀ x11 . In x11 x0 ⟶ ∀ x12 . In x12 x0 ⟶ (x3 x11 x7 x12 = x12 ⟶ False) ⟶ False) ⟶ (∀ x11 . In x11 x0 ⟶ ∀ x12 . In x12 x0 ⟶ ∀ x13 . In x13 x0 ⟶ (x6 x11 x12 (x2 x11 (x1 x12 (x6 x11 x12 (x2 x11 (x1 x12 x13))))) = x13 ⟶ False) ⟶ False) ⟶ (∀ x11 . In x11 x0 ⟶ ∀ x12 . In x12 x0 ⟶ ∀ x13 . In x13 x0 ⟶ (x3 x11 x12 (x1 x11 (x8 x12 (x3 x11 x12 (x1 x11 (x8 x12 (x3 x11 x12 (x1 x11 (x8 x12 x13)))))))) = x13 ⟶ False) ⟶ False) ⟶ (x10 x5 x4 = x10 x4 x5 ⟶ False) ⟶ False (proof)Known b4782..contra : ∀ x0 : ο . (not x0 ⟶ False) ⟶ x0Theorem 7d2a1.. : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι → ι → ι . ∀ x7 : ι → ι → ι . ∀ x8 x9 : ι → ι → ι → ι . ∀ x10 x11 x12 x13 : ι → ι → ι . Loop_with_defs_cex1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ In x4 x0 ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x8 x14 x15 (x12 x14 (x7 x15 (x8 x14 x15 (x12 x14 (x7 x15 x16))))) = x16) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x9 x14 x15 (x7 x14 (x10 x15 (x9 x14 x15 (x7 x14 (x10 x15 (x9 x14 x15 (x7 x14 (x10 x15 x16)))))))) = x16) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ x7 x14 (x12 x15 (x13 x16 x17)) = x12 x15 (x13 x16 (x7 x14 x17))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x8 x14 x15 (x7 x16 (x10 x17 x18)) = x7 x16 (x10 x17 (x8 x14 x15 x18))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x10 x14 (x12 x15 (x13 x16 (x10 x17 x18))) = x13 x16 (x10 x17 (x10 x14 (x12 x15 x18)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x10 x14 (x7 x15 (x10 x16 (x12 x17 x18))) = x10 x16 (x12 x17 (x10 x14 (x7 x15 x18)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x13 x14 (x7 x15 (x7 x16 (x10 x17 x18))) = x7 x16 (x10 x17 (x13 x14 (x7 x15 x18)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x12 x14 (x12 x15 (x12 x16 (x12 x17 x18))) = x12 x16 (x12 x17 (x12 x14 (x12 x15 x18)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x12 x14 (x12 x15 (x12 x16 (x7 x17 x18))) = x12 x16 (x7 x17 (x12 x14 (x12 x15 x18)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ x8 x14 x15 (x10 x16 (x10 x17 (x7 x18 x19))) = x10 x17 (x7 x18 (x8 x14 x15 (x10 x16 x19)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ x9 x14 x15 (x12 x16 (x10 x17 (x12 x18 x19))) = x10 x17 (x12 x18 (x9 x14 x15 (x12 x16 x19)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ x9 x14 x15 (x13 x16 (x8 x17 x18 (x10 x19 x20))) = x8 x17 x18 (x10 x19 (x9 x14 x15 (x13 x16 x20)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ x8 x14 x15 (x7 x16 (x9 x17 x18 (x7 x19 x20))) = x9 x17 x18 (x7 x19 (x8 x14 x15 (x7 x16 x20)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x8 x14 x15 (x12 x16 (x10 x17 (x8 x18 x19 (x12 x20 x21)))) = x8 x18 x19 (x12 x20 (x8 x14 x15 (x12 x16 (x10 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x12 x16 (x10 x17 (x9 x18 x19 (x13 x20 x21)))) = x9 x18 x19 (x13 x20 (x9 x14 x15 (x12 x16 (x10 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x12 x16 (x10 x17 (x8 x18 x19 (x7 x20 x21)))) = x8 x18 x19 (x7 x20 (x9 x14 x15 (x12 x16 (x10 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x13 x16 (x10 x17 (x9 x18 x19 (x7 x20 x21)))) = x9 x18 x19 (x7 x20 (x9 x14 x15 (x13 x16 (x10 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x13 x16 (x10 x17 (x8 x18 x19 (x12 x20 x21)))) = x8 x18 x19 (x12 x20 (x9 x14 x15 (x13 x16 (x10 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x12 x16 (x12 x17 (x8 x18 x19 (x7 x20 x21)))) = x8 x18 x19 (x7 x20 (x9 x14 x15 (x12 x16 (x12 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x7 x16 (x12 x17 (x9 x18 x19 (x7 x20 x21)))) = x9 x18 x19 (x7 x20 (x9 x14 x15 (x7 x16 (x12 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x8 x14 x15 (x12 x16 (x12 x17 (x8 x18 x19 (x12 x20 x21)))) = x8 x18 x19 (x12 x20 (x8 x14 x15 (x12 x16 (x12 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x13 x16 (x13 x17 (x9 x18 x19 (x10 x20 x21)))) = x9 x18 x19 (x10 x20 (x9 x14 x15 (x13 x16 (x13 x17 x21))))) ⟶ False (proof)Theorem f8f92.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . In x2 x0 ⟶ ∀ x3 . In x3 x0 ⟶ In (x1 x2 x3) x0) ⟶ ∀ x2 : ι → ι → ι . (∀ x3 . In x3 x0 ⟶ ∀ x4 . In x4 x0 ⟶ In (x2 x3 x4) x0) ⟶ ∀ x3 . In x3 x0 ⟶ ∀ x4 . In x4 x0 ⟶ ∀ x5 : ι → ι → ι → ι . (∀ x6 . In x6 x0 ⟶ ∀ x7 . In x7 x0 ⟶ ∀ x8 . In x8 x0 ⟶ In (x5 x6 x7 x8) x0) ⟶ ∀ x6 . In x6 x0 ⟶ ∀ x7 : ι → ι → ι . (∀ x8 . In x8 x0 ⟶ ∀ x9 . In x9 x0 ⟶ In (x7 x8 x9) x0) ⟶ ∀ x8 : ι → ι → ι . (∀ x9 . In x9 x0 ⟶ ∀ x10 . In x10 x0 ⟶ In (x8 x9 x10) x0) ⟶ ∀ x9 : ι → ι → ι . (∀ x10 . In x10 x0 ⟶ ∀ x11 . In x11 x0 ⟶ In (x9 x10 x11) x0) ⟶ (∀ x10 . In x10 x0 ⟶ ∀ x11 . In x11 x0 ⟶ (x9 x10 (x8 x10 x11) = x11 ⟶ False) ⟶ False) ⟶ (∀ x10 . In x10 x0 ⟶ ∀ x11 . In x11 x0 ⟶ (x1 x10 x11 = x8 x10 (x9 x11 x10) ⟶ False) ⟶ False) ⟶ (∀ x10 . In x10 x0 ⟶ (x7 x6 x10 = x10 ⟶ False) ⟶ False) ⟶ (∀ x10 . In x10 x0 ⟶ (x2 x6 x10 = x10 ⟶ False) ⟶ False) ⟶ (∀ x10 . In x10 x0 ⟶ ∀ x11 . In x11 x0 ⟶ (x5 x6 x10 x11 = x11 ⟶ False) ⟶ False) ⟶ (∀ x10 . In x10 x0 ⟶ ∀ x11 . In x11 x0 ⟶ (x5 x10 x6 x11 = x11 ⟶ False) ⟶ False) ⟶ (∀ x10 . In x10 x0 ⟶ ∀ x11 . In x11 x0 ⟶ ∀ x12 . In x12 x0 ⟶ (x5 x10 x11 (x1 x10 (x2 x11 (x5 x10 x11 (x1 x10 (x2 x11 (x5 x10 x11 (x1 x10 (x2 x11 x12)))))))) = x12 ⟶ False) ⟶ False) ⟶ (∀ x10 . In x10 x0 ⟶ ∀ x11 . In x11 x0 ⟶ ∀ x12 . In x12 x0 ⟶ (x5 x10 x11 (x7 x10 (x1 x11 (x5 x10 x11 (x7 x10 (x1 x11 x12))))) = x12 ⟶ False) ⟶ False) ⟶ (x9 x4 x3 = x9 x3 x4 ⟶ False) ⟶ False (proof)
|
|