Search for blocks/addresses/...

Proofgold Address

address
PUYq4HrZWrHCFTFYAWtBX2PH4SwS1aqNwFr
total
0
mg
-
conjpub
-
current assets
c8907../d16e1.. bday: 15378 doc published by Pr4zB..
Param add_natadd_nat : ιιι
Param ordsuccordsucc : ιι
Param nat_pnat_p : ιο
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Known nat_0nat_0 : nat_p 0
Known add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0
Theorem 893fe.. : add_nat 4 1 = 5 (proof)
Known nat_1nat_1 : nat_p 1
Theorem f3bb6.. : add_nat 4 2 = 6 (proof)
Known nat_2nat_2 : nat_p 2
Theorem 54790.. : add_nat 4 3 = 7 (proof)
Known nat_3nat_3 : nat_p 3
Theorem 36602.. : add_nat 4 4 = 8 (proof)
Theorem 9dea5.. : add_nat 8 1 = 9 (proof)
Theorem 118d3.. : add_nat 8 2 = 10 (proof)
Theorem cd2cb.. : add_nat 8 3 = 11 (proof)
Theorem 69b67..add_nat_8_4 : add_nat 8 4 = 12 (proof)
Known nat_4nat_4 : nat_p 4
Theorem 5f9b2.. : add_nat 8 5 = 13 (proof)
Known nat_5nat_5 : nat_p 5
Theorem 70d6d.. : add_nat 8 6 = 14 (proof)
Known nat_6nat_6 : nat_p 6
Theorem e1175.. : add_nat 8 7 = 15 (proof)
Known nat_7nat_7 : nat_p 7
Theorem 1521b.. : add_nat 8 8 = 16 (proof)
Theorem 4ff4f.. : add_nat 11 1 = 12 (proof)
Theorem cef3c.. : add_nat 11 2 = 13 (proof)
Theorem 336f0.. : add_nat 11 3 = 14 (proof)
Theorem 62dd3.. : add_nat 11 4 = 15 (proof)
Theorem 525d1.. : add_nat 11 5 = 16 (proof)
Theorem 91a85.. : add_nat 11 6 = 17 (proof)
Theorem a918d.. : add_nat 11 7 = 18 (proof)
Theorem 50bed.. : add_nat 11 8 = 19 (proof)
Known nat_8nat_8 : nat_p 8
Theorem 45540.. : add_nat 11 9 = 20 (proof)
Known nat_9nat_9 : nat_p 9
Theorem 2e174.. : add_nat 11 10 = 21 (proof)
Known nat_10nat_10 : nat_p 10
Theorem d5f37.. : add_nat 11 11 = 22 (proof)
Known nat_11nat_11 : nat_p 11
Theorem 90194.. : add_nat 11 12 = 23 (proof)
Param mul_natmul_nat : ιιι
Known add_nat_1_1_2add_nat_1_1_2 : add_nat 1 1 = 2
Known mul_add_nat_distrLmul_add_nat_distrL : ∀ x0 . nat_p x0∀ x1 . nat_p x1∀ x2 . nat_p x2mul_nat x0 (add_nat x1 x2) = add_nat (mul_nat x0 x1) (mul_nat x0 x2)
Known mul_nat_1Rmul_nat_1R : ∀ x0 . mul_nat x0 1 = x0
Known 256ca.. : add_nat 2 2 = 4
Theorem c3da7.. : mul_nat 2 2 = 4 (proof)
Theorem 5712d.. : mul_nat 2 4 = 8 (proof)
Theorem af7b1.. : mul_nat 2 8 = 16 (proof)
Theorem a9609.. : add_nat 6 1 = 7 (proof)
Theorem a16a6.. : add_nat 6 2 = 8 (proof)
Theorem c3434.. : add_nat 6 3 = 9 (proof)
Theorem 2cf95.. : add_nat 6 4 = 10 (proof)
Theorem 3df8e.. : add_nat 16 1 = 17 (proof)
Theorem 019e3.. : add_nat 16 2 = 18 (proof)
Theorem dc79e.. : add_nat 16 3 = 19 (proof)
Theorem f956d.. : add_nat 16 4 = 20 (proof)
Theorem ba5ba.. : add_nat 16 5 = 21 (proof)
Theorem f5339.. : add_nat 16 6 = 22 (proof)
Theorem 07f4e.. : add_nat 16 7 = 23 (proof)
Theorem 816bd.. : add_nat 16 8 = 24 (proof)
Theorem a3f6a.. : add_nat 16 9 = 25 (proof)
Theorem d085c.. : add_nat 16 10 = 26 (proof)
Theorem fa3b7.. : add_nat 16 11 = 27 (proof)
Theorem fbe6e.. : add_nat 16 12 = 28 (proof)
Known nat_12nat_12 : nat_p 12
Theorem 22701.. : add_nat 16 13 = 29 (proof)
Param nat_primrecnat_primrec : ι(ιιι) → ιι
Definition exp_natexp_nat := λ x0 . nat_primrec 1 (λ x1 . mul_nat x0)
Known nat_primrec_Snat_primrec_S : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . nat_p x2nat_primrec x0 x1 (ordsucc x2) = x1 x2 (nat_primrec x0 x1 x2)
Known nat_primrec_0nat_primrec_0 : ∀ x0 . ∀ x1 : ι → ι → ι . nat_primrec x0 x1 0 = x0
Theorem 3e9f7..exp_nat_1 : ∀ x0 . exp_nat x0 1 = x0 (proof)
Theorem a8f07.. : exp_nat 2 2 = 4 (proof)
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known mul_nat_SRmul_nat_SR : ∀ x0 x1 . nat_p x1mul_nat x0 (ordsucc x1) = add_nat x0 (mul_nat x0 x1)
Known add_nat_SLadd_nat_SL : ∀ x0 . nat_p x0∀ x1 . nat_p x1add_nat (ordsucc x0) x1 = ordsucc (add_nat x0 x1)
Known mul_nat_pmul_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (mul_nat x0 x1)
Known add_nat_0Ladd_nat_0L : ∀ x0 . nat_p x0add_nat 0 x0 = x0
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Theorem 95d11.. : ∀ x0 . nat_p x0∀ x1 . x1x0ordsucc (mul_nat 2 x1)mul_nat 2 x0 (proof)
Known In_3_4In_3_4 : 34
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Known nat_transnat_trans : ∀ x0 . nat_p x0∀ x1 . x1x0x1x0
Known 4f402..exp_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (exp_nat x0 x1)
Theorem d9442.. : ∀ x0 . nat_p x0ordsucc (exp_nat 2 (ordsucc x0))exp_nat 2 (ordsucc (ordsucc x0)) (proof)
Theorem adab1.. : exp_nat 2 3 = 8 (proof)
Theorem db1de.. : exp_nat 2 4 = 16 (proof)

previous assets