Search for blocks/addresses/...
Proofgold Address
address
PUZ6J5uSxbnddDm9sFSknE8VLjmwa62VkbT
total
0
mg
-
conjpub
-
current assets
3b934..
/
79bb5..
bday:
1604
doc published by
PrGxv..
Known
0610a..
neq_ordsucc_0
:
∀ x0 .
not
(
ordsucc
x0
=
0
)
Theorem
97f79..
neq_3_0
:
not
(
3
=
0
)
(proof)
Known
aaf17..
ordsucc_inj_contra
:
∀ x0 x1 .
not
(
x0
=
x1
)
⟶
not
(
ordsucc
x0
=
ordsucc
x1
)
Known
db5d7..
neq_2_0
:
not
(
2
=
0
)
Theorem
28881..
neq_3_1
:
not
(
3
=
1
)
(proof)
Known
56778..
neq_2_1
:
not
(
2
=
1
)
Theorem
f1fc4..
neq_3_2
:
not
(
3
=
2
)
(proof)
Theorem
fc9ff..
neq_4_0
:
not
(
4
=
0
)
(proof)
Theorem
34131..
neq_4_1
:
not
(
4
=
1
)
(proof)
Theorem
547fc..
neq_4_2
:
not
(
4
=
2
)
(proof)
Theorem
bfbcc..
neq_4_3
:
not
(
4
=
3
)
(proof)
Theorem
3d58e..
neq_5_0
:
not
(
5
=
0
)
(proof)
Theorem
03b32..
neq_5_1
:
not
(
5
=
1
)
(proof)
Theorem
b24f1..
neq_5_2
:
not
(
5
=
2
)
(proof)
Theorem
ab3a6..
neq_5_3
:
not
(
5
=
3
)
(proof)
Theorem
8140f..
neq_5_4
:
not
(
5
=
4
)
(proof)
Theorem
4193c..
neq_6_0
:
not
(
6
=
0
)
(proof)
Theorem
53f92..
neq_6_1
:
not
(
6
=
1
)
(proof)
Theorem
f4b9c..
neq_6_2
:
not
(
6
=
2
)
(proof)
Theorem
96787..
neq_6_3
:
not
(
6
=
3
)
(proof)
Theorem
2a680..
neq_6_4
:
not
(
6
=
4
)
(proof)
Theorem
3a5c9..
neq_6_5
:
not
(
6
=
5
)
(proof)
Theorem
ca789..
neq_7_0
:
not
(
7
=
0
)
(proof)
Theorem
6a87a..
neq_7_1
:
not
(
7
=
1
)
(proof)
Theorem
46692..
neq_7_2
:
not
(
7
=
2
)
(proof)
Theorem
c0553..
neq_7_3
:
not
(
7
=
3
)
(proof)
Theorem
21c2e..
neq_7_4
:
not
(
7
=
4
)
(proof)
Theorem
fdff8..
neq_7_5
:
not
(
7
=
5
)
(proof)
Theorem
0a1a6..
neq_7_6
:
not
(
7
=
6
)
(proof)
Theorem
c1d23..
neq_8_0
:
not
(
8
=
0
)
(proof)
Theorem
3fd1f..
neq_8_1
:
not
(
8
=
1
)
(proof)
Theorem
0aafe..
neq_8_2
:
not
(
8
=
2
)
(proof)
Theorem
4862b..
neq_8_3
:
not
(
8
=
3
)
(proof)
Theorem
e99bd..
neq_8_4
:
not
(
8
=
4
)
(proof)
Theorem
c7589..
neq_8_5
:
not
(
8
=
5
)
(proof)
Theorem
85418..
neq_8_6
:
not
(
8
=
6
)
(proof)
Theorem
0ff51..
neq_8_7
:
not
(
8
=
7
)
(proof)
Theorem
71f93..
neq_9_0
:
not
(
9
=
0
)
(proof)
Theorem
d7575..
neq_9_1
:
not
(
9
=
1
)
(proof)
Theorem
5076a..
neq_9_2
:
not
(
9
=
2
)
(proof)
Theorem
b56e1..
neq_9_3
:
not
(
9
=
3
)
(proof)
Theorem
178d5..
neq_9_4
:
not
(
9
=
4
)
(proof)
Theorem
ff515..
neq_9_5
:
not
(
9
=
5
)
(proof)
Theorem
59e77..
neq_9_6
:
not
(
9
=
6
)
(proof)
Theorem
ed67b..
neq_9_7
:
not
(
9
=
7
)
(proof)
Theorem
bb081..
neq_9_8
:
not
(
9
=
8
)
(proof)
Known
5f38d..
TransSet_def
:
TransSet
=
λ x1 .
∀ x2 .
In
x2
x1
⟶
Subq
x2
x1
Known
c1173..
Subq_def
:
Subq
=
λ x1 x2 .
∀ x3 .
In
x3
x1
⟶
In
x3
x2
Theorem
300ec..
TransSetIb
:
∀ x0 .
(
∀ x1 .
In
x1
x0
⟶
∀ x2 .
In
x2
x1
⟶
In
x2
x0
)
⟶
TransSet
x0
(proof)
Theorem
6e976..
TransSetEb
:
∀ x0 .
TransSet
x0
⟶
∀ x1 .
In
x1
x0
⟶
∀ x2 .
In
x2
x1
⟶
In
x2
x0
(proof)
Known
f40a4..
ordinal_def
:
ordinal
=
λ x1 .
and
(
TransSet
x1
)
(
∀ x2 .
In
x2
x1
⟶
TransSet
x2
)
Known
39854..
andEL
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x0
Theorem
339db..
ordinal_TransSet
:
∀ x0 .
ordinal
x0
⟶
TransSet
x0
(proof)
Theorem
1cf88..
ordinal_TransSet_b
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
In
x1
x0
⟶
∀ x2 .
In
x2
x1
⟶
In
x2
x0
(proof)
Known
eb789..
andER
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x1
Theorem
be3f3..
ordinal_In_TransSet
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
In
x1
x0
⟶
TransSet
x1
(proof)
Theorem
f2b18..
ordinal_In_TransSet_b
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
In
x1
x0
⟶
∀ x2 .
In
x2
x1
⟶
∀ x3 .
In
x3
x2
⟶
In
x3
x1
(proof)
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
2901c..
EmptyE
:
∀ x0 .
In
x0
0
⟶
False
Theorem
f9053..
ordinal_Empty
:
ordinal
0
(proof)
Known
andE
andE
:
∀ x0 x1 : ο .
and
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
367e6..
SubqE
:
∀ x0 x1 .
Subq
x0
x1
⟶
∀ x2 .
In
x2
x0
⟶
In
x2
x1
Theorem
14977..
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
In
x1
x0
⟶
ordinal
x1
(proof)
Known
61ad0..
In_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
(
∀ x2 .
In
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
x0
x1
Theorem
68454..
ordinal_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
ordinal
x1
⟶
(
∀ x2 .
In
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
ordinal
x1
⟶
x0
x1
(proof)
Known
b4782..
contra
:
∀ x0 : ο .
(
not
x0
⟶
False
)
⟶
x0
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Known
f6404..
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
48a85..
least_ordinal_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
and
(
ordinal
x2
)
(
x0
x2
)
⟶
x1
)
⟶
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
and
(
ordinal
x2
)
(
x0
x2
)
)
(
∀ x3 .
In
x3
x2
⟶
not
(
x0
x3
)
)
⟶
x1
)
⟶
x1
(proof)
Known
b0dce..
SubqI
:
∀ x0 x1 .
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
Subq
x0
x1
Known
b4776..
ordsuccE_impred
:
∀ x0 x1 .
In
x1
(
ordsucc
x0
)
⟶
∀ x2 : ο .
(
In
x1
x0
⟶
x2
)
⟶
(
x1
=
x0
⟶
x2
)
⟶
x2
Known
e9b50..
ordsuccI1b
:
∀ x0 x1 .
In
x1
x0
⟶
In
x1
(
ordsucc
x0
)
Theorem
97a90..
TransSet_ordsucc
:
∀ x0 .
TransSet
x0
⟶
TransSet
(
ordsucc
x0
)
(proof)
Theorem
8f4aa..
ordinal_ordsucc
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
ordsucc
x0
)
(proof)
Known
fed08..
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
08dfe..
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
c7c31..
nat_1
:
nat_p
1
Theorem
c2b57..
ordinal_1
:
ordinal
1
(proof)
Known
36841..
nat_2
:
nat_p
2
Theorem
a2c28..
ordinal_2
:
ordinal
2
(proof)
Theorem
27c30..
TransSet_ordsucc_In_Subq
:
∀ x0 .
TransSet
x0
⟶
∀ x1 .
In
x1
x0
⟶
Subq
(
ordsucc
x1
)
x0
(proof)
Theorem
26a5d..
ordinal_ordsucc_In_Subq
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
In
x1
x0
⟶
Subq
(
ordsucc
x1
)
x0
(proof)
Known
3ab01..
xmcases_In
:
∀ x0 x1 .
∀ x2 : ο .
(
In
x0
x1
⟶
x2
)
⟶
(
nIn
x0
x1
⟶
x2
)
⟶
x2
Known
cb243..
or3I1
:
∀ x0 x1 x2 : ο .
x0
⟶
or
(
or
x0
x1
)
x2
Known
a4277..
or3I3
:
∀ x0 x1 x2 : ο .
x2
⟶
or
(
or
x0
x1
)
x2
Known
8aff3..
or3I2
:
∀ x0 x1 x2 : ο .
x1
⟶
or
(
or
x0
x1
)
x2
Known
535f2..
set_ext_2
:
∀ x0 x1 .
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
(
∀ x2 .
In
x2
x1
⟶
In
x2
x0
)
⟶
x0
=
x1
Known
8cb38..
or3E
:
∀ x0 x1 x2 : ο .
or
(
or
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x3
)
⟶
(
x1
⟶
x3
)
⟶
(
x2
⟶
x3
)
⟶
x3
Known
24526..
nIn_E2
:
∀ x0 x1 .
nIn
x0
x1
⟶
In
x0
x1
⟶
False
Theorem
3fa8b..
ordinal_trichotomy_or
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
or
(
In
x0
x1
)
(
x0
=
x1
)
)
(
In
x1
x0
)
(proof)
Theorem
42117..
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
In
x0
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
In
x1
x0
⟶
x2
)
⟶
x2
(proof)
Known
6fb1f..
tab_neg_exactly1of2
:
∀ x0 x1 : ο .
not
(
exactly1of2
x0
x1
)
⟶
(
x0
⟶
x1
⟶
False
)
⟶
(
not
x0
⟶
not
x1
⟶
False
)
⟶
False
Theorem
c603f..
exactly1of2_I1
:
∀ x0 x1 : ο .
x0
⟶
not
x1
⟶
exactly1of2
x0
x1
(proof)
Theorem
e4955..
exactly1of2_I2
:
∀ x0 x1 : ο .
not
x0
⟶
x1
⟶
exactly1of2
x0
x1
(proof)
Known
71e01..
exactly1of3_def
:
exactly1of3
=
λ x1 x2 x3 : ο .
or
(
and
(
exactly1of2
x1
x2
)
(
not
x3
)
)
(
and
(
and
(
not
x1
)
(
not
x2
)
)
x3
)
Known
dcbd9..
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Theorem
d04cf..
exactly1of3_I1
:
∀ x0 x1 x2 : ο .
x0
⟶
not
x1
⟶
not
x2
⟶
exactly1of3
x0
x1
x2
(proof)
Theorem
7eee1..
exactly1of3_I2
:
∀ x0 x1 x2 : ο .
not
x0
⟶
x1
⟶
not
x2
⟶
exactly1of3
x0
x1
x2
(proof)
Known
eca40..
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
351d2..
exactly1of3_I3
:
∀ x0 x1 x2 : ο .
not
x0
⟶
not
x1
⟶
x2
⟶
exactly1of3
x0
x1
x2
(proof)
Known
e85f6..
In_irref
:
∀ x0 .
nIn
x0
x0
Known
0f73a..
In_no2cycle
:
∀ x0 x1 .
In
x0
x1
⟶
In
x1
x0
⟶
False
Known
382c5..
nIn_def
:
nIn
=
λ x1 x2 .
not
(
In
x1
x2
)
Theorem
ed131..
ordinal_trichotomy
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
exactly1of3
(
In
x0
x1
)
(
x0
=
x1
)
(
In
x1
x0
)
(proof)
Known
6696a..
Subq_ref
:
∀ x0 .
Subq
x0
x0
Theorem
3e9a7..
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
In
x0
x1
)
(
Subq
x1
x0
)
(proof)
Known
37124..
orE
:
∀ x0 x1 : ο .
or
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Theorem
a9fff..
ordinal_linear
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
Subq
x0
x1
)
(
Subq
x1
x0
)
(proof)
Theorem
b651e..
ordinal_ordsucc_In_eq
:
∀ x0 x1 .
ordinal
x0
⟶
In
x1
x0
⟶
or
(
In
(
ordsucc
x1
)
x0
)
(
x0
=
ordsucc
x1
)
(proof)
Known
47706..
xmcases
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
not
x0
⟶
x1
)
⟶
x1
Theorem
adbfc..
ordinal_lim_or_succ
:
∀ x0 .
ordinal
x0
⟶
or
(
∀ x1 .
In
x1
x0
⟶
In
(
ordsucc
x1
)
x0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
In
x2
x0
)
(
x0
=
ordsucc
x2
)
⟶
x1
)
⟶
x1
)
(proof)
Known
165f2..
ordsuccI1
:
∀ x0 .
Subq
x0
(
ordsucc
x0
)
Known
cf025..
ordsuccI2
:
∀ x0 .
In
x0
(
ordsucc
x0
)
Known
b3824..
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Theorem
6bb04..
ordinal_ordsucc_In
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
In
x1
x0
⟶
In
(
ordsucc
x1
)
(
ordsucc
x0
)
(proof)
Known
79a81..
TransSetI
:
∀ x0 .
(
∀ x1 .
In
x1
x0
⟶
Subq
x1
x0
)
⟶
TransSet
x0
Known
2109a..
UnionE2
:
∀ x0 x1 .
In
x1
(
Union
x0
)
⟶
∀ x2 : ο .
(
∀ x3 .
In
x1
x3
⟶
In
x3
x0
⟶
x2
)
⟶
x2
Known
a4d26..
UnionI
:
∀ x0 x1 x2 .
In
x1
x2
⟶
In
x2
x0
⟶
In
x1
(
Union
x0
)
Known
2fc4a..
TransSetE
:
∀ x0 .
TransSet
x0
⟶
∀ x1 .
In
x1
x0
⟶
Subq
x1
x0
Theorem
19db8..
ordinal_Union
:
∀ x0 .
(
∀ x1 .
In
x1
x0
⟶
ordinal
x1
)
⟶
ordinal
(
Union
x0
)
(proof)
Known
7b31d..
famunionE2
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
famunion
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
In
x4
x0
⟶
In
x2
(
x1
x4
)
⟶
x3
)
⟶
x3
Known
8f8c2..
famunionI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
In
x2
x0
⟶
In
x3
(
x1
x2
)
⟶
In
x3
(
famunion
x0
x1
)
Theorem
d7246..
ordinal_famunion
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
In
x2
x0
⟶
ordinal
(
x1
x2
)
)
⟶
ordinal
(
famunion
x0
x1
)
(proof)
Known
485cd..
binintersect_Subq_eq_1
:
∀ x0 x1 .
Subq
x0
x1
⟶
binintersect
x0
x1
=
x0
Known
6b560..
binintersect_com
:
∀ x0 x1 .
binintersect
x0
x1
=
binintersect
x1
x0
Theorem
4ebb9..
ordinal_binintersect
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
(
binintersect
x0
x1
)
(proof)
Known
69c3f..
Subq_binunion_eq
:
∀ x0 x1 .
Subq
x0
x1
=
(
binunion
x0
x1
=
x1
)
Known
78b78..
binunion_com
:
∀ x0 x1 .
binunion
x0
x1
=
binunion
x1
x0
Theorem
78603..
ordinal_binunion
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
(
binunion
x0
x1
)
(proof)
Known
aa3f4..
SepE_impred
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
In
x2
(
Sep
x0
x1
)
⟶
∀ x3 : ο .
(
In
x2
x0
⟶
x1
x2
⟶
x3
)
⟶
x3
Known
dab1f..
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
In
x2
x0
⟶
x1
x2
⟶
In
x2
(
Sep
x0
x1
)
Known
c4260..
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
In
x2
(
Sep
x0
x1
)
⟶
In
x2
x0
Theorem
62f91..
ordinal_Sep
:
∀ x0 .
ordinal
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
In
x2
x0
⟶
∀ x3 .
In
x3
x2
⟶
x1
x2
⟶
x1
x3
)
⟶
ordinal
(
Sep
x0
x1
)
(proof)
previous assets