Search for blocks/addresses/...

Proofgold Address

address
PUZw1UohYhmasw3HDyvxDgLSVbvMfsm1r7M
total
0
mg
-
conjpub
-
current assets
0b0e1../92236.. bday: 48789 doc published by PrMzh..
Param ordsuccordsucc : ιι
Known neq_2_0neq_2_0 : 2 = 0∀ x0 : ο . x0
Param omegaomega : ι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Param nat_pnat_p : ιο
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_0nat_0 : nat_p 0
Theorem b2bdc.. : omega = 0∀ x0 : ο . x0
...

Param If_iIf_i : οιιι
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Known In_0_1In_0_1 : 01
Theorem 9348e.. : ∀ x0 : ο . x00If_i x0 1 0
...

Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Known FalseEFalseE : False∀ x0 : ο . x0
Theorem 9bd39.. : ∀ x0 : ο . 0If_i x0 1 0x0
...

Param lamSigma : ι(ιι) → ι
Definition 9ca4f.. := λ x0 . lam x0 (λ x1 . lam x0 (λ x2 . If_i (x1 = x2) 1 0))
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known If_i_orIf_i_or : ∀ x0 : ο . ∀ x1 x2 . or (If_i x0 x1 x2 = x1) (If_i x0 x1 x2 = x2)
Known In_1_2In_1_2 : 12
Known In_0_2In_0_2 : 02
Theorem 4488c.. : ∀ x0 . 9ca4f.. x0setexp (setexp 2 x0) x0
...

Param apap : ιιι
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Theorem 2d60a.. : ∀ x0 x1 . x1x00ap (ap (9ca4f.. x0) x1) x1
...

Theorem 17684.. : ∀ x0 x1 . x1x0∀ x2 . x2x00ap (ap (9ca4f.. x0) x1) x2x1 = x2
...

Theorem ad55a.. : ∀ x0 . x02∀ x1 . x120ap (ap (9ca4f.. 2) x0) x10x00x1
...

Known cases_2cases_2 : ∀ x0 . x02∀ x1 : ι → ο . x1 0x1 1x1 x0
Theorem 5ab41.. : ∀ x0 . x02∀ x1 . x12(0x00x1)(0x10x0)0ap (ap (9ca4f.. 2) x0) x1
...

Theorem 70484.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x00ap (ap (9ca4f.. x0) x1) x20ap (ap (9ca4f.. x0) x2) x30ap (ap (9ca4f.. x0) x1) x3
...

Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Theorem a94a5.. : ∀ x0 x1 x2 . x2setexp x1 x0∀ x3 . x3setexp x1 x0∀ x4 . x4x0∀ x5 . x5x00ap (ap (9ca4f.. (setexp x1 x0)) x2) x30ap (ap (9ca4f.. x0) x4) x50ap (ap (9ca4f.. x1) (ap x2 x4)) (ap x3 x5)
...

Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Theorem 7e67a.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι . (∀ x4 . x4x0x2 x4x1)(∀ x4 . x4x0x3 x4x1)(∀ x4 . x4x00ap (ap (9ca4f.. x1) (x2 x4)) (x3 x4))0ap (ap (9ca4f.. (setexp x1 x0)) (lam x0 x2)) (lam x0 x3)
...

Definition 8d6e5.. := ap (ap (9ca4f.. (setexp 2 2)) (lam 2 (λ x0 . x0))) (lam 2 (λ x0 . x0))
Theorem 18dc3.. : 8d6e5..2
...

Theorem a497c.. : 0ap (ap (9ca4f.. 2) 8d6e5..) (ap (ap (9ca4f.. (setexp 2 2)) (lam 2 (λ x0 . x0))) (lam 2 (λ x0 . x0)))
...

Theorem e7067.. : 08d6e5..
...

Definition 9de32.. := lam 2 (λ x0 . lam 2 (λ x1 . ap (ap (9ca4f.. (setexp 2 (setexp (setexp 2 2) 2))) (lam (setexp (setexp 2 2) 2) (λ x2 . ap (ap x2 x0) x1))) (lam (setexp (setexp 2 2) 2) (λ x2 . ap (ap x2 8d6e5..) 8d6e5..))))
Theorem b2e87.. : 9de32..setexp (setexp 2 2) 2
...

Theorem e0fb0.. : 0ap (ap (9ca4f.. (setexp (setexp 2 2) 2)) 9de32..) (lam 2 (λ x0 . lam 2 (λ x1 . ap (ap (9ca4f.. (setexp 2 (setexp (setexp 2 2) 2))) (lam (setexp (setexp 2 2) 2) (λ x2 . ap (ap x2 x0) x1))) (lam (setexp (setexp 2 2) 2) (λ x2 . ap (ap x2 8d6e5..) 8d6e5..)))))
...

Definition 90e5f.. := lam 2 (λ x0 . lam 2 (λ x1 . ap (ap (9ca4f.. 2) (ap (ap 9de32.. x0) x1)) x0))
Theorem 0b79f.. : 90e5f..setexp (setexp 2 2) 2
...

Theorem ec419.. : 0ap (ap (9ca4f.. (setexp (setexp 2 2) 2)) 90e5f..) (lam 2 (λ x0 . lam 2 (λ x1 . ap (ap (9ca4f.. 2) (ap (ap 9de32.. x0) x1)) x0)))
...

Definition 1c786.. := λ x0 . lam (setexp 2 x0) (λ x1 . ap (ap (9ca4f.. (setexp 2 x0)) x1) (lam x0 (λ x2 . 8d6e5..)))
Theorem 72e0b.. : ∀ x0 . (x0 = 0∀ x1 : ο . x1)1c786.. x0setexp 2 (setexp 2 x0)
...

Theorem 897f1.. : ∀ x0 . (x0 = 0∀ x1 : ο . x1)0ap (ap (9ca4f.. (setexp 2 (setexp 2 x0))) (1c786.. x0)) (lam (setexp 2 x0) (λ x1 . ap (ap (9ca4f.. (setexp 2 x0)) x1) (lam x0 (λ x2 . 8d6e5..))))
...

Definition 82c61.. := λ x0 . lam (setexp 2 x0) (λ x1 . ap (1c786.. 2) (lam 2 (λ x2 . ap (ap 90e5f.. (ap (1c786.. x0) (lam x0 (λ x3 . ap (ap 90e5f.. (ap x1 x3)) x2)))) x2)))
Theorem 05c85.. : ∀ x0 . (x0 = 0∀ x1 : ο . x1)82c61.. x0setexp 2 (setexp 2 x0)
...

Theorem cee69.. : ∀ x0 . (x0 = 0∀ x1 : ο . x1)0ap (ap (9ca4f.. (setexp 2 (setexp 2 x0))) (82c61.. x0)) (lam (setexp 2 x0) (λ x1 . ap (1c786.. 2) (lam 2 (λ x2 . ap (ap 90e5f.. (ap (1c786.. x0) (lam x0 (λ x3 . ap (ap 90e5f.. (ap x1 x3)) x2)))) x2))))
...

Definition 8a736.. := lam 2 (λ x0 . lam 2 (λ x1 . ap (1c786.. 2) (lam 2 (λ x2 . ap (ap 90e5f.. (ap (ap 90e5f.. x0) x2)) (ap (ap 90e5f.. (ap (ap 90e5f.. x1) x2)) x2)))))
Theorem 7c7c0.. : 8a736..setexp (setexp 2 2) 2
...

Theorem 18a89.. : 0ap (ap (9ca4f.. (setexp (setexp 2 2) 2)) 8a736..) (lam 2 (λ x0 . lam 2 (λ x1 . ap (1c786.. 2) (lam 2 (λ x2 . ap (ap 90e5f.. (ap (ap 90e5f.. x0) x2)) (ap (ap 90e5f.. (ap (ap 90e5f.. x1) x2)) x2))))))
...

Definition 497c5.. := ap (1c786.. 2) (lam 2 (λ x0 . x0))
Theorem eed34.. : 497c5..2
...

Theorem b131f.. : 0ap (ap (9ca4f.. 2) 497c5..) (ap (1c786.. 2) (lam 2 (λ x0 . x0)))
...

Definition d8d8a.. := lam 2 (λ x0 . ap (ap 90e5f.. x0) 497c5..)
Theorem 07b96.. : d8d8a..setexp 2 2
...

Theorem 1391d.. : 0ap (ap (9ca4f.. (setexp 2 2)) d8d8a..) (lam 2 (λ x0 . ap (ap 90e5f.. x0) 497c5..))
...


previous assets