current assets |
---|
08206../f3b62.. bday: 14556 doc published by Pr4zB..Definition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3 ∈ x0 ⟶ x2 x3 ∈ x1) (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 = x2 x4 ⟶ x3 = x4)Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3 ⟶ x2) ⟶ x2Param ordsuccordsucc : ι → ιKnown In_0_2In_0_2 : 0 ∈ 2Known In_1_2In_1_2 : 1 ∈ 2Definition FalseFalse := ∀ x0 : ο . x0Known FalseEFalseE : False ⟶ ∀ x0 : ο . x0Known neq_1_0neq_1_0 : 1 = 0 ⟶ ∀ x0 : ο . x0Theorem ad7a7.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 . (∀ x9 . x9 ∈ x8 ⟶ ∀ x10 : ι → ο . x10 x0 ⟶ x10 x1 ⟶ x10 x2 ⟶ x10 x3 ⟶ x10 x4 ⟶ x10 x5 ⟶ x10 x6 ⟶ x10 x7 ⟶ x10 x9) ⟶ ∀ x9 . x9 ⊆ x8 ⟶ atleastp 2 x9 ⟶ ∀ x10 : ο . (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ x10 (proof)Param setminussetminus : ι → ι → ιParam SingSing : ι → ιDefinition notnot := λ x0 : ο . x0 ⟶ FalseDefinition nInnIn := λ x0 x1 . not (x0 ∈ x1)Known setminusEsetminusE : ∀ x0 x1 x2 . x2 ∈ setminus x0 x1 ⟶ and (x2 ∈ x0) (nIn x2 x1)Known SingISingI : ∀ x0 . x0 ∈ Sing x0Known In_2_3In_2_3 : 2 ∈ 3Known andIandI : ∀ x0 x1 : ο . x0 ⟶ x1 ⟶ and x0 x1Known setminusIsetminusI : ∀ x0 x1 x2 . x2 ∈ x0 ⟶ nIn x2 x1 ⟶ x2 ∈ setminus x0 x1Param nat_pnat_p : ι → οKnown nat_transnat_trans : ∀ x0 . nat_p x0 ⟶ ∀ x1 . x1 ∈ x0 ⟶ x1 ⊆ x0Known nat_3nat_3 : nat_p 3Known In_irrefIn_irref : ∀ x0 . nIn x0 x0Known SingESingE : ∀ x0 x1 . x1 ∈ Sing x0 ⟶ x1 = x0Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0 ⊆ x1 ⟶ x1 ⊆ x2 ⟶ x0 ⊆ x2Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1 ⊆ x0Theorem a6a5a.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 . (∀ x9 . x9 ∈ x8 ⟶ ∀ x10 : ι → ο . x10 x0 ⟶ x10 x1 ⟶ x10 x2 ⟶ x10 x3 ⟶ x10 x4 ⟶ x10 x5 ⟶ x10 x6 ⟶ x10 x7 ⟶ x10 x9) ⟶ ∀ x9 . x9 ⊆ x8 ⟶ atleastp 3 x9 ⟶ ∀ x10 : ο . (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ x10 (proof)Known In_3_4In_3_4 : 3 ∈ 4Known nat_4nat_4 : nat_p 4Theorem c14f6.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 . (∀ x9 . x9 ∈ x8 ⟶ ∀ x10 : ι → ο . x10 x0 ⟶ x10 x1 ⟶ x10 x2 ⟶ x10 x3 ⟶ x10 x4 ⟶ x10 x5 ⟶ x10 x6 ⟶ x10 x7 ⟶ x10 x9) ⟶ ∀ x9 . x9 ⊆ x8 ⟶ atleastp 4 x9 ⟶ ∀ x10 : ο . (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ x10 (proof)
|
|