Search for blocks/addresses/...

Proofgold Address

address
PUe9SrnWRGTwN3jLYYkMbxSmoWqxzm2pEmP
total
0
mg
-
conjpub
-
current assets
2fa50../7a6de.. bday: 36384 doc published by PrCmT..
Known df_preset__df_drs__df_poset__df_plt__df_lub__df_glb__df_join__df_meet__df_toset__df_p0__df_p1__df_lat__df_clat__df_odu__df_ipo__df_dlat__df_ps__df_tsr : ∀ x0 : ο . (wceq cpreset (cab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wral (λ x4 . wral (λ x5 . wral (λ x6 . wa (wbr (cv x4) (cv x4) (cv x3)) (wa (wbr (cv x4) (cv x5) (cv x3)) (wbr (cv x5) (cv x6) (cv x3))wbr (cv x4) (cv x6) (cv x3))) (λ x6 . cv x2)) (λ x5 . cv x2)) (λ x4 . cv x2)) (cfv (cv x1) cple)) (cfv (cv x1) cbs)))wceq cdrs (crab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wa (wne (cv x2) c0) (wral (λ x4 . wral (λ x5 . wrex (λ x6 . wa (wbr (cv x4) (cv x6) (cv x3)) (wbr (cv x5) (cv x6) (cv x3))) (λ x6 . cv x2)) (λ x5 . cv x2)) (λ x4 . cv x2))) (cfv (cv x1) cple)) (cfv (cv x1) cbs)) (λ x1 . cpreset))wceq cpo (cab (λ x1 . wex (λ x2 . wex (λ x3 . w3a (wceq (cv x2) (cfv (cv x1) cbs)) (wceq (cv x3) (cfv (cv x1) cple)) (wral (λ x4 . wral (λ x5 . wral (λ x6 . w3a (wbr (cv x4) (cv x4) (cv x3)) (wa (wbr (cv x4) (cv x5) (cv x3)) (wbr (cv x5) (cv x4) (cv x3))wceq (cv x4) (cv x5)) (wa (wbr (cv x4) (cv x5) (cv x3)) (wbr (cv x5) (cv x6) (cv x3))wbr (cv x4) (cv x6) (cv x3))) (λ x6 . cv x2)) (λ x5 . cv x2)) (λ x4 . cv x2))))))wceq cplt (cmpt (λ x1 . cvv) (λ x1 . cdif (cfv (cv x1) cple) cid))wceq club (cmpt (λ x1 . cvv) (λ x1 . cres (cmpt (λ x2 . cpw (cfv (cv x1) cbs)) (λ x2 . crio (λ x3 . wa (wral (λ x4 . wbr (cv x4) (cv x3) (cfv (cv x1) cple)) (λ x4 . cv x2)) (wral (λ x4 . wral (λ x5 . wbr (cv x5) (cv x4) (cfv (cv x1) cple)) (λ x5 . cv x2)wbr (cv x3) (cv x4) (cfv (cv x1) cple)) (λ x4 . cfv (cv x1) cbs))) (λ x3 . cfv (cv x1) cbs))) (cab (λ x2 . wreu (λ x3 . wa (wral (λ x4 . wbr (cv x4) (cv x3) (cfv (cv x1) cple)) (λ x4 . cv x2)) (wral (λ x4 . wral (λ x5 . wbr (cv x5) (cv x4) (cfv (cv x1) cple)) (λ x5 . cv x2)wbr (cv x3) (cv x4) (cfv (cv x1) cple)) (λ x4 . cfv (cv x1) cbs))) (λ x3 . cfv (cv x1) cbs)))))wceq cglb (cmpt (λ x1 . cvv) (λ x1 . cres (cmpt (λ x2 . cpw (cfv (cv x1) cbs)) (λ x2 . crio (λ x3 . wa (wral (λ x4 . wbr (cv x3) (cv x4) (cfv (cv x1) cple)) (λ x4 . cv x2)) (wral (λ x4 . wral (λ x5 . wbr (cv x4) (cv x5) (cfv (cv x1) cple)) (λ x5 . cv x2)wbr (cv x4) (cv x3) (cfv (cv x1) cple)) (λ x4 . cfv (cv x1) cbs))) (λ x3 . cfv (cv x1) cbs))) (cab (λ x2 . wreu (λ x3 . wa (wral (λ x4 . wbr (cv x3) (cv x4) (cfv (cv x1) cple)) (λ x4 . cv x2)) (wral (λ x4 . wral (λ x5 . wbr (cv x4) (cv x5) (cfv (cv x1) cple)) (λ x5 . cv x2)wbr (cv x4) (cv x3) (cfv (cv x1) cple)) (λ x4 . cfv (cv x1) cbs))) (λ x3 . cfv (cv x1) cbs)))))wceq cjn (cmpt (λ x1 . cvv) (λ x1 . coprab (λ x2 x3 x4 . wbr (cpr (cv x2) (cv x3)) (cv x4) (cfv (cv x1) club))))wceq cmee (cmpt (λ x1 . cvv) (λ x1 . coprab (λ x2 x3 x4 . wbr (cpr (cv x2) (cv x3)) (cv x4) (cfv (cv x1) cglb))))wceq ctos (crab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wral (λ x4 . wral (λ x5 . wo (wbr (cv x4) (cv x5) (cv x3)) (wbr (cv x5) (cv x4) (cv x3))) (λ x5 . cv x2)) (λ x4 . cv x2)) (cfv (cv x1) cple)) (cfv (cv x1) cbs)) (λ x1 . cpo))wceq cp0 (cmpt (λ x1 . cvv) (λ x1 . cfv (cfv (cv x1) cbs) (cfv (cv x1) cglb)))wceq cp1 (cmpt (λ x1 . cvv) (λ x1 . cfv (cfv (cv x1) cbs) (cfv (cv x1) club)))wceq clat (crab (λ x1 . wa (wceq (cdm (cfv (cv x1) cjn)) (cxp (cfv (cv x1) cbs) (cfv (cv x1) cbs))) (wceq (cdm (cfv (cv x1) cmee)) (cxp (cfv (cv x1) cbs) (cfv (cv x1) cbs)))) (λ x1 . cpo))wceq ccla (crab (λ x1 . wa (wceq (cdm (cfv (cv x1) club)) (cpw (cfv (cv x1) cbs))) (wceq (cdm (cfv (cv x1) cglb)) (cpw (cfv (cv x1) cbs)))) (λ x1 . cpo))wceq codu (cmpt (λ x1 . cvv) (λ x1 . co (cv x1) (cop (cfv cnx cple) (ccnv (cfv (cv x1) cple))) csts))wceq cipo (cmpt (λ x1 . cvv) (λ x1 . csb (copab (λ x2 x3 . wa (wss (cpr (cv x2) (cv x3)) (cv x1)) (wss (cv x2) (cv x3)))) (λ x2 . cun (cpr (cop (cfv cnx cbs) (cv x1)) (cop (cfv cnx cts) (cfv (cv x2) cordt))) (cpr (cop (cfv cnx cple) (cv x2)) (cop (cfv cnx coc) (cmpt (λ x3 . cv x1) (λ x3 . cuni (crab (λ x4 . wceq (cin (cv x4) (cv x3)) c0) (λ x4 . cv x1)))))))))wceq cdlat (crab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wral (λ x5 . wral (λ x6 . wral (λ x7 . wceq (co (cv x5) (co (cv x6) (cv x7) (cv x3)) (cv x4)) (co (co (cv x5) (cv x6) (cv x4)) (co (cv x5) (cv x7) (cv x4)) (cv x3))) (λ x7 . cv x2)) (λ x6 . cv x2)) (λ x5 . cv x2)) (cfv (cv x1) cmee)) (cfv (cv x1) cjn)) (cfv (cv x1) cbs)) (λ x1 . clat))wceq cps (cab (λ x1 . w3a (wrel (cv x1)) (wss (ccom (cv x1) (cv x1)) (cv x1)) (wceq (cin (cv x1) (ccnv (cv x1))) (cres cid (cuni (cuni (cv x1)))))))wceq ctsr (crab (λ x1 . wss (cxp (cdm (cv x1)) (cdm (cv x1))) (cun (cv x1) (ccnv (cv x1)))) (λ x1 . cps))x0)x0
Theorem df_preset : wceq cpreset (cab (λ x0 . wsbc (λ x1 . wsbc (λ x2 . wral (λ x3 . wral (λ x4 . wral (λ x5 . wa (wbr (cv x3) (cv x3) (cv x2)) (wa (wbr (cv x3) (cv x4) (cv x2)) (wbr (cv x4) (cv x5) (cv x2))wbr (cv x3) (cv x5) (cv x2))) (λ x5 . cv x1)) (λ x4 . cv x1)) (λ x3 . cv x1)) (cfv (cv x0) cple)) (cfv (cv x0) cbs))) (proof)
Theorem df_drs : wceq cdrs (crab (λ x0 . wsbc (λ x1 . wsbc (λ x2 . wa (wne (cv x1) c0) (wral (λ x3 . wral (λ x4 . wrex (λ x5 . wa (wbr (cv x3) (cv x5) (cv x2)) (wbr (cv x4) (cv x5) (cv x2))) (λ x5 . cv x1)) (λ x4 . cv x1)) (λ x3 . cv x1))) (cfv (cv x0) cple)) (cfv (cv x0) cbs)) (λ x0 . cpreset)) (proof)
Theorem df_poset : wceq cpo (cab (λ x0 . wex (λ x1 . wex (λ x2 . w3a (wceq (cv x1) (cfv (cv x0) cbs)) (wceq (cv x2) (cfv (cv x0) cple)) (wral (λ x3 . wral (λ x4 . wral (λ x5 . w3a (wbr (cv x3) (cv x3) (cv x2)) (wa (wbr (cv x3) (cv x4) (cv x2)) (wbr (cv x4) (cv x3) (cv x2))wceq (cv x3) (cv x4)) (wa (wbr (cv x3) (cv x4) (cv x2)) (wbr (cv x4) (cv x5) (cv x2))wbr (cv x3) (cv x5) (cv x2))) (λ x5 . cv x1)) (λ x4 . cv x1)) (λ x3 . cv x1)))))) (proof)
Theorem df_plt : wceq cplt (cmpt (λ x0 . cvv) (λ x0 . cdif (cfv (cv x0) cple) cid)) (proof)
Theorem df_lub : wceq club (cmpt (λ x0 . cvv) (λ x0 . cres (cmpt (λ x1 . cpw (cfv (cv x0) cbs)) (λ x1 . crio (λ x2 . wa (wral (λ x3 . wbr (cv x3) (cv x2) (cfv (cv x0) cple)) (λ x3 . cv x1)) (wral (λ x3 . wral (λ x4 . wbr (cv x4) (cv x3) (cfv (cv x0) cple)) (λ x4 . cv x1)wbr (cv x2) (cv x3) (cfv (cv x0) cple)) (λ x3 . cfv (cv x0) cbs))) (λ x2 . cfv (cv x0) cbs))) (cab (λ x1 . wreu (λ x2 . wa (wral (λ x3 . wbr (cv x3) (cv x2) (cfv (cv x0) cple)) (λ x3 . cv x1)) (wral (λ x3 . wral (λ x4 . wbr (cv x4) (cv x3) (cfv (cv x0) cple)) (λ x4 . cv x1)wbr (cv x2) (cv x3) (cfv (cv x0) cple)) (λ x3 . cfv (cv x0) cbs))) (λ x2 . cfv (cv x0) cbs))))) (proof)
Theorem df_glb : wceq cglb (cmpt (λ x0 . cvv) (λ x0 . cres (cmpt (λ x1 . cpw (cfv (cv x0) cbs)) (λ x1 . crio (λ x2 . wa (wral (λ x3 . wbr (cv x2) (cv x3) (cfv (cv x0) cple)) (λ x3 . cv x1)) (wral (λ x3 . wral (λ x4 . wbr (cv x3) (cv x4) (cfv (cv x0) cple)) (λ x4 . cv x1)wbr (cv x3) (cv x2) (cfv (cv x0) cple)) (λ x3 . cfv (cv x0) cbs))) (λ x2 . cfv (cv x0) cbs))) (cab (λ x1 . wreu (λ x2 . wa (wral (λ x3 . wbr (cv x2) (cv x3) (cfv (cv x0) cple)) (λ x3 . cv x1)) (wral (λ x3 . wral (λ x4 . wbr (cv x3) (cv x4) (cfv (cv x0) cple)) (λ x4 . cv x1)wbr (cv x3) (cv x2) (cfv (cv x0) cple)) (λ x3 . cfv (cv x0) cbs))) (λ x2 . cfv (cv x0) cbs))))) (proof)
Theorem df_join : wceq cjn (cmpt (λ x0 . cvv) (λ x0 . coprab (λ x1 x2 x3 . wbr (cpr (cv x1) (cv x2)) (cv x3) (cfv (cv x0) club)))) (proof)
Theorem df_meet : wceq cmee (cmpt (λ x0 . cvv) (λ x0 . coprab (λ x1 x2 x3 . wbr (cpr (cv x1) (cv x2)) (cv x3) (cfv (cv x0) cglb)))) (proof)
Theorem df_toset : wceq ctos (crab (λ x0 . wsbc (λ x1 . wsbc (λ x2 . wral (λ x3 . wral (λ x4 . wo (wbr (cv x3) (cv x4) (cv x2)) (wbr (cv x4) (cv x3) (cv x2))) (λ x4 . cv x1)) (λ x3 . cv x1)) (cfv (cv x0) cple)) (cfv (cv x0) cbs)) (λ x0 . cpo)) (proof)
Theorem df_p0 : wceq cp0 (cmpt (λ x0 . cvv) (λ x0 . cfv (cfv (cv x0) cbs) (cfv (cv x0) cglb))) (proof)
Theorem df_p1 : wceq cp1 (cmpt (λ x0 . cvv) (λ x0 . cfv (cfv (cv x0) cbs) (cfv (cv x0) club))) (proof)
Theorem df_lat : wceq clat (crab (λ x0 . wa (wceq (cdm (cfv (cv x0) cjn)) (cxp (cfv (cv x0) cbs) (cfv (cv x0) cbs))) (wceq (cdm (cfv (cv x0) cmee)) (cxp (cfv (cv x0) cbs) (cfv (cv x0) cbs)))) (λ x0 . cpo)) (proof)
Theorem df_clat : wceq ccla (crab (λ x0 . wa (wceq (cdm (cfv (cv x0) club)) (cpw (cfv (cv x0) cbs))) (wceq (cdm (cfv (cv x0) cglb)) (cpw (cfv (cv x0) cbs)))) (λ x0 . cpo)) (proof)
Theorem df_odu : wceq codu (cmpt (λ x0 . cvv) (λ x0 . co (cv x0) (cop (cfv cnx cple) (ccnv (cfv (cv x0) cple))) csts)) (proof)
Theorem df_ipo : wceq cipo (cmpt (λ x0 . cvv) (λ x0 . csb (copab (λ x1 x2 . wa (wss (cpr (cv x1) (cv x2)) (cv x0)) (wss (cv x1) (cv x2)))) (λ x1 . cun (cpr (cop (cfv cnx cbs) (cv x0)) (cop (cfv cnx cts) (cfv (cv x1) cordt))) (cpr (cop (cfv cnx cple) (cv x1)) (cop (cfv cnx coc) (cmpt (λ x2 . cv x0) (λ x2 . cuni (crab (λ x3 . wceq (cin (cv x3) (cv x2)) c0) (λ x3 . cv x0))))))))) (proof)
Theorem df_dlat : wceq cdlat (crab (λ x0 . wsbc (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wral (λ x4 . wral (λ x5 . wral (λ x6 . wceq (co (cv x4) (co (cv x5) (cv x6) (cv x2)) (cv x3)) (co (co (cv x4) (cv x5) (cv x3)) (co (cv x4) (cv x6) (cv x3)) (cv x2))) (λ x6 . cv x1)) (λ x5 . cv x1)) (λ x4 . cv x1)) (cfv (cv x0) cmee)) (cfv (cv x0) cjn)) (cfv (cv x0) cbs)) (λ x0 . clat)) (proof)
Theorem df_ps : wceq cps (cab (λ x0 . w3a (wrel (cv x0)) (wss (ccom (cv x0) (cv x0)) (cv x0)) (wceq (cin (cv x0) (ccnv (cv x0))) (cres cid (cuni (cuni (cv x0))))))) (proof)
Theorem df_tsr : wceq ctsr (crab (λ x0 . wss (cxp (cdm (cv x0)) (cdm (cv x0))) (cun (cv x0) (ccnv (cv x0)))) (λ x0 . cps)) (proof)

previous assets