Search for blocks/addresses/...
Proofgold Address
address
PUg5xMCMHAYefcY7QZVMzx3tESBZvPRynCk
total
0
mg
-
conjpub
-
current assets
67b0e..
/
1c3d2..
bday:
11300
doc published by
PrEBh..
Param
MetaAdjunction_strict
MetaAdjunction_strict
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ο
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
MetaCat_initial_p
initial_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
and
(
x0
x4
)
(
∀ x6 .
x0
x6
⟶
and
(
x1
x4
x6
(
x5
x6
)
)
(
∀ x7 .
x1
x4
x6
x7
⟶
x7
=
x5
x6
)
)
Param
MetaFunctor_strict
MetaFunctor_strict
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
ο
Param
MetaFunctor
MetaFunctor
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
ο
Param
MetaNatTrans
MetaNatTrans
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
ο
Param
MetaAdjunction
MetaAdjunction
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ο
Known
29671..
MetaAdjunction_strict_E
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
MetaAdjunction_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
∀ x14 : ο .
(
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaFunctor
x4
x5
x6
x7
x0
x1
x2
x3
x10
x11
⟶
MetaNatTrans
x0
x1
x2
x3
x0
x1
x2
x3
(
λ x15 .
x15
)
(
λ x15 x16 x17 .
x17
)
(
λ x15 .
x10
(
x8
x15
)
)
(
λ x15 x16 x17 .
x11
(
x8
x15
)
(
x8
x16
)
(
x9
x15
x16
x17
)
)
x12
⟶
MetaNatTrans
x4
x5
x6
x7
x4
x5
x6
x7
(
λ x15 .
x8
(
x10
x15
)
)
(
λ x15 x16 x17 .
x9
(
x10
x15
)
(
x10
x16
)
(
x11
x15
x16
x17
)
)
(
λ x15 .
x15
)
(
λ x15 x16 x17 .
x17
)
x13
⟶
MetaAdjunction
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
x14
)
⟶
x14
Known
e6292..
MetaAdjunctionE
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
MetaAdjunction
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
∀ x14 : ο .
(
(
∀ x15 .
x0
x15
⟶
x7
(
x8
x15
)
(
x8
(
x10
(
x8
x15
)
)
)
(
x8
x15
)
(
x13
(
x8
x15
)
)
(
x9
x15
(
x10
(
x8
x15
)
)
(
x12
x15
)
)
=
x6
(
x8
x15
)
)
⟶
(
∀ x15 .
x4
x15
⟶
x3
(
x10
x15
)
(
x10
(
x8
(
x10
x15
)
)
)
(
x10
x15
)
(
x11
(
x8
(
x10
x15
)
)
x15
(
x13
x15
)
)
(
x12
(
x10
x15
)
)
=
x2
(
x10
x15
)
)
⟶
x14
)
⟶
x14
Param
MetaCat
MetaCat
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Known
95305..
MetaFunctor_strict_E
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
∀ x10 : ο .
(
MetaCat
x0
x1
x2
x3
⟶
MetaCat
x4
x5
x6
x7
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
x10
)
⟶
x10
Param
MetaFunctor_prop1
idT
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Definition
MetaFunctor_prop2
compT
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 .
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x1
x4
x5
x7
⟶
x1
x5
x6
x8
⟶
x1
x4
x6
(
x3
x4
x5
x6
x8
x7
)
Known
7da4b..
MetaCat_E
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
∀ x4 : ο .
(
MetaFunctor_prop1
x0
x1
x2
x3
⟶
MetaFunctor_prop2
x0
x1
x2
x3
⟶
(
∀ x5 x6 x7 .
x0
x5
⟶
x0
x6
⟶
x1
x5
x6
x7
⟶
x3
x5
x5
x6
x7
(
x2
x5
)
=
x7
)
⟶
(
∀ x5 x6 x7 .
x0
x5
⟶
x0
x6
⟶
x1
x5
x6
x7
⟶
x3
x5
x6
x6
(
x2
x6
)
x7
=
x7
)
⟶
(
∀ x5 x6 x7 x8 x9 x10 x11 .
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x5
x6
x9
⟶
x1
x6
x7
x10
⟶
x1
x7
x8
x11
⟶
x3
x5
x6
x8
(
x3
x6
x7
x8
x11
x10
)
x9
=
x3
x5
x7
x8
x11
(
x3
x5
x6
x7
x10
x9
)
)
⟶
x4
)
⟶
x4
Known
973e2..
MetaFunctorE
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
∀ x10 : ο .
(
(
∀ x11 .
x0
x11
⟶
x4
(
x8
x11
)
)
⟶
(
∀ x11 x12 x13 .
x0
x11
⟶
x0
x12
⟶
x1
x11
x12
x13
⟶
x5
(
x8
x11
)
(
x8
x12
)
(
x9
x11
x12
x13
)
)
⟶
(
∀ x11 .
x0
x11
⟶
x9
x11
x11
(
x2
x11
)
=
x6
(
x8
x11
)
)
⟶
(
∀ x11 x12 x13 x14 x15 .
x0
x11
⟶
x0
x12
⟶
x0
x13
⟶
x1
x11
x12
x14
⟶
x1
x12
x13
x15
⟶
x9
x11
x13
(
x3
x11
x12
x13
x15
x14
)
=
x7
(
x8
x11
)
(
x8
x12
)
(
x8
x13
)
(
x9
x12
x13
x15
)
(
x9
x11
x12
x14
)
)
⟶
x10
)
⟶
x10
Known
aa53a..
MetaNatTransE
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 :
ι → ι
.
MetaNatTrans
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
∀ x13 : ο .
(
(
∀ x14 .
x0
x14
⟶
x5
(
x8
x14
)
(
x10
x14
)
(
x12
x14
)
)
⟶
(
∀ x14 x15 x16 .
x0
x14
⟶
x0
x15
⟶
x1
x14
x15
x16
⟶
x7
(
x8
x14
)
(
x10
x14
)
(
x10
x15
)
(
x11
x14
x15
x16
)
(
x12
x14
)
=
x7
(
x8
x14
)
(
x8
x15
)
(
x10
x15
)
(
x12
x15
)
(
x9
x14
x15
x16
)
)
⟶
x13
)
⟶
x13
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
09501..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
MetaAdjunction_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
∀ x14 .
∀ x15 :
ι → ι
.
MetaCat_initial_p
x0
x1
x2
x3
x14
x15
⟶
∀ x16 : ο .
(
∀ x17 :
ι → ι
.
MetaCat_initial_p
x4
x5
x6
x7
(
x8
x14
)
x17
⟶
x16
)
⟶
x16
(proof)
Param
pack_p
pack_p
:
ι
→
(
ι
→
ο
) →
ι
Definition
struct_p
struct_p
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ο
.
x1
(
pack_p
x2
x3
)
)
⟶
x1
x0
Param
UnaryPredHom
Hom_struct_p
:
ι
→
ι
→
ι
→
ο
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Definition
lam_id
lam_id
:=
λ x0 .
lam
x0
(
λ x1 .
x1
)
Param
ap
ap
:
ι
→
ι
→
ι
Definition
struct_id
struct_id
:=
λ x0 .
lam_id
(
ap
x0
0
)
Definition
lam_comp
lam_comp
:=
λ x0 x1 x2 .
lam
x0
(
λ x3 .
ap
x1
(
ap
x2
x3
)
)
Definition
struct_comp
struct_comp
:=
λ x0 x1 x2 .
lam_comp
(
ap
x0
0
)
Known
caa5e..
MetaCat_struct_p
:
MetaCat
struct_p
UnaryPredHom
struct_id
struct_comp
Definition
True
True
:=
∀ x0 : ο .
x0
⟶
x0
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Definition
HomSet
SetHom
:=
λ x0 x1 x2 .
x2
∈
setexp
x1
x0
Known
40bbd..
MetaCat_struct_p_Forgetful
:
MetaFunctor
struct_p
UnaryPredHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
Definition
False
False
:=
∀ x0 : ο .
x0
Known
pack_struct_p_I
pack_struct_p_I
:
∀ x0 .
∀ x1 :
ι → ο
.
struct_p
(
pack_p
x0
x1
)
Known
55fb5..
Hom_struct_p_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
∀ x4 .
UnaryPredHom
(
pack_p
x0
x2
)
(
pack_p
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
x2
x6
⟶
x3
(
ap
x4
x6
)
)
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
Pi_eta
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
lam
x0
(
ap
x2
)
=
x2
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Theorem
1615b..
MetaCat_struct_p_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
struct_p
UnaryPredHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
MetaCat_terminal_p
terminal_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
and
(
x0
x4
)
(
∀ x6 .
x0
x6
⟶
and
(
x1
x6
x4
(
x5
x6
)
)
(
∀ x7 .
x1
x6
x4
x7
⟶
x7
=
x5
x6
)
)
Param
ordsucc
ordsucc
:
ι
→
ι
Known
pack_p_0_eq2
pack_p_0_eq2
:
∀ x0 .
∀ x1 :
ι → ο
.
x0
=
ap
(
pack_p
x0
x1
)
0
Known
In_0_1
In_0_1
:
0
∈
1
Known
TrueI
TrueI
:
True
Param
Sing
Sing
:
ι
→
ι
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
eq_1_Sing0
eq_1_Sing0
:
1
=
Sing
0
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Theorem
14bd1..
MetaCat_struct_p_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
struct_p
UnaryPredHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Known
d6aa5..
MetaAdjunction_strict_I
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaFunctor
x4
x5
x6
x7
x0
x1
x2
x3
x10
x11
⟶
MetaNatTrans
x0
x1
x2
x3
x0
x1
x2
x3
(
λ x14 .
x14
)
(
λ x14 x15 x16 .
x16
)
(
λ x14 .
x10
(
x8
x14
)
)
(
λ x14 x15 x16 .
x11
(
x8
x14
)
(
x8
x15
)
(
x9
x14
x15
x16
)
)
x12
⟶
MetaNatTrans
x4
x5
x6
x7
x4
x5
x6
x7
(
λ x14 .
x8
(
x10
x14
)
)
(
λ x14 x15 x16 .
x9
(
x10
x14
)
(
x10
x15
)
(
x11
x14
x15
x16
)
)
(
λ x14 .
x14
)
(
λ x14 x15 x16 .
x16
)
x13
⟶
MetaAdjunction
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
MetaAdjunction_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
Known
5cbb4..
MetaFunctor_strict_I
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
MetaCat
x4
x5
x6
x7
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
Known
e4125..
MetaCatSet
:
MetaCat
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
Known
2cb62..
MetaFunctorI
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
(
∀ x10 .
x0
x10
⟶
x4
(
x8
x10
)
)
⟶
(
∀ x10 x11 x12 .
x0
x10
⟶
x0
x11
⟶
x1
x10
x11
x12
⟶
x5
(
x8
x10
)
(
x8
x11
)
(
x9
x10
x11
x12
)
)
⟶
(
∀ x10 .
x0
x10
⟶
x9
x10
x10
(
x2
x10
)
=
x6
(
x8
x10
)
)
⟶
(
∀ x10 x11 x12 x13 x14 .
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x1
x10
x11
x13
⟶
x1
x11
x12
x14
⟶
x9
x10
x12
(
x3
x10
x11
x12
x14
x13
)
=
x7
(
x8
x10
)
(
x8
x11
)
(
x8
x12
)
(
x9
x11
x12
x14
)
(
x9
x10
x11
x13
)
)
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
Known
c1d68..
MetaNatTransI
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 :
ι → ι
.
(
∀ x13 .
x0
x13
⟶
x5
(
x8
x13
)
(
x10
x13
)
(
x12
x13
)
)
⟶
(
∀ x13 x14 x15 .
x0
x13
⟶
x0
x14
⟶
x1
x13
x14
x15
⟶
x7
(
x8
x13
)
(
x10
x13
)
(
x10
x14
)
(
x11
x13
x14
x15
)
(
x12
x13
)
=
x7
(
x8
x13
)
(
x8
x14
)
(
x10
x14
)
(
x12
x14
)
(
x9
x13
x14
x15
)
)
⟶
MetaNatTrans
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
Known
lam_id_exp_In
lam_id_exp_In
:
∀ x0 .
lam_id
x0
∈
setexp
x0
x0
Known
lam_comp_id_R
lam_comp_id_R
:
∀ x0 x1 x2 .
x2
∈
setexp
x1
x0
⟶
lam_comp
x0
x2
(
lam_id
x0
)
=
x2
Known
lam_comp_id_L
lam_comp_id_L
:
∀ x0 x1 x2 .
x2
∈
setexp
x1
x0
⟶
lam_comp
x0
(
lam_id
x1
)
x2
=
x2
Known
fd494..
MetaAdjunctionI
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
(
∀ x14 .
x0
x14
⟶
x7
(
x8
x14
)
(
x8
(
x10
(
x8
x14
)
)
)
(
x8
x14
)
(
x13
(
x8
x14
)
)
(
x9
x14
(
x10
(
x8
x14
)
)
(
x12
x14
)
)
=
x6
(
x8
x14
)
)
⟶
(
∀ x14 .
x4
x14
⟶
x3
(
x10
x14
)
(
x10
(
x8
(
x10
x14
)
)
)
(
x10
x14
)
(
x11
(
x8
(
x10
x14
)
)
x14
(
x13
x14
)
)
(
x12
(
x10
x14
)
)
=
x2
(
x10
x14
)
)
⟶
MetaAdjunction
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
Theorem
c3ca2..
MetaCat_struct_p_left_adjoint_forgetful
:
∀ x0 : ο .
(
∀ x1 :
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι → ι
.
MetaAdjunction_strict
(
λ x8 .
True
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
struct_p
UnaryPredHom
struct_id
struct_comp
x1
x3
(
λ x8 .
ap
x8
0
)
(
λ x8 x9 x10 .
x10
)
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
unpack_p_o
unpack_p_o
:
ι
→
(
ι
→
(
ι
→
ο
) →
ο
) →
ο
Definition
PtdPred
struct_p_nonempty
:=
λ x0 .
and
(
struct_p
x0
)
(
unpack_p_o
x0
(
λ x1 .
λ x2 :
ι → ο
.
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
x2
x4
)
⟶
x3
)
⟶
x3
)
)
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Theorem
eb75e..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
)
⟶
x4
)
⟶
x4
)
=
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x1
x5
)
⟶
x4
)
⟶
x4
(proof)
Known
unpack_p_o_eq
unpack_p_o_eq
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι → ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
iff
(
x2
x4
)
(
x3
x4
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_p_o
(
pack_p
x1
x2
)
x0
=
x0
x1
x2
Theorem
93af6..
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
x0
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
PtdPred
(
pack_p
x0
x1
)
(proof)
Theorem
d8d91..
:
∀ x0 .
PtdPred
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ο
.
∀ x4 .
x4
∈
x2
⟶
x3
x4
⟶
x1
(
pack_p
x2
x3
)
)
⟶
x1
x0
(proof)
Known
aef2e..
MetaCat_struct_p_nonempty
:
MetaCat
PtdPred
UnaryPredHom
struct_id
struct_comp
Known
0322a..
MetaCat_struct_p_nonempty_Forgetful
:
MetaFunctor
PtdPred
UnaryPredHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
Known
neq_0_1
neq_0_1
:
0
=
1
⟶
∀ x0 : ο .
x0
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Known
In_1_2
In_1_2
:
1
∈
2
Known
In_0_2
In_0_2
:
0
∈
2
Theorem
701ad..
:
not
(
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
PtdPred
UnaryPredHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
)
(proof)
Known
80cab..
MetaCatSet_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
(
λ x4 .
True
)
HomSet
(
λ x4 .
lam
x4
(
λ x5 .
x5
)
)
(
λ x4 x5 x6 x7 x8 .
lam
x4
(
λ x9 .
ap
x7
(
ap
x8
x9
)
)
)
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Theorem
b7c45..
:
not
(
∀ x0 : ο .
(
∀ x1 :
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι → ι
.
MetaAdjunction_strict
(
λ x8 .
True
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
PtdPred
UnaryPredHom
struct_id
struct_comp
x1
x3
(
λ x8 .
ap
x8
0
)
(
λ x8 x9 x10 .
x10
)
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
)
(proof)
Theorem
128d6..
MetaCat_struct_p_nonempty_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
PtdPred
UnaryPredHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
pack_e
pack_e
:
ι
→
ι
→
ι
Definition
struct_e
struct_e
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 x3 .
x3
∈
x2
⟶
x1
(
pack_e
x2
x3
)
)
⟶
x1
x0
Param
PtdSetHom
Hom_struct_e
:
ι
→
ι
→
ι
→
ο
Param
unpack_e_i
unpack_e_i
:
ι
→
CT2
ι
Known
unpack_e_i_eq
unpack_e_i_eq
:
∀ x0 :
ι →
ι → ι
.
∀ x1 x2 .
unpack_e_i
(
pack_e
x1
x2
)
x0
=
x0
x1
x2
Known
f65a3..
Hom_struct_e_pack
:
∀ x0 x1 x2 x3 x4 .
PtdSetHom
(
pack_e
x0
x2
)
(
pack_e
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
ap
x4
x2
=
x3
)
Known
pack_e_0_eq2
pack_e_0_eq2
:
∀ x0 x1 .
x0
=
ap
(
pack_e
x0
x1
)
0
Theorem
1f2a9..
MetaFunctor_struct_e_struct_p_nonempty
:
MetaFunctor
struct_e
PtdSetHom
(
λ x0 .
lam_id
(
ap
x0
0
)
)
(
λ x0 x1 x2 .
lam_comp
(
ap
x0
0
)
)
PtdPred
UnaryPredHom
(
λ x0 .
lam_id
(
ap
x0
0
)
)
(
λ x0 x1 x2 .
lam_comp
(
ap
x0
0
)
)
(
λ x0 .
unpack_e_i
x0
(
λ x1 x2 .
pack_p
x1
(
λ x3 .
x3
=
x2
)
)
)
(
λ x0 x1 x2 .
x2
)
(proof)
Param
pack_r
pack_r
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Definition
struct_r
struct_r
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
Param
BinRelnHom
Hom_struct_r
:
ι
→
ι
→
ι
→
ο
Known
6955f..
MetaCat_struct_r
:
MetaCat
struct_r
BinRelnHom
struct_id
struct_comp
Known
07626..
MetaCat_struct_r_Forgetful
:
MetaFunctor
struct_r
BinRelnHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
Known
pack_struct_r_I
pack_struct_r_I
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
struct_r
(
pack_r
x0
x1
)
Known
c84ab..
Hom_struct_r_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
BinRelnHom
(
pack_r
x0
x2
)
(
pack_r
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x2
x6
x7
⟶
x3
(
ap
x4
x6
)
(
ap
x4
x7
)
)
Theorem
d664c..
MetaCat_struct_r_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
struct_r
BinRelnHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Known
pack_r_0_eq2
pack_r_0_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
x2
x0
(
ap
(
pack_r
x0
x1
)
0
)
⟶
x2
(
ap
(
pack_r
x0
x1
)
0
)
x0
Theorem
f400a..
MetaCat_struct_r_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
struct_r
BinRelnHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
301a5..
MetaCat_struct_r_left_adjoint_forgetful
:
∀ x0 : ο .
(
∀ x1 :
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι → ι
.
MetaAdjunction_strict
(
λ x8 .
True
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
struct_r
BinRelnHom
struct_id
struct_comp
x1
x3
(
λ x8 .
ap
x8
0
)
(
λ x8 x9 x10 .
x10
)
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
unpack_r_o
unpack_r_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ο
) →
ο
) →
ο
Definition
PER
struct_r_per
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x5
⟶
x2
x3
x5
)
)
)
Known
unpack_r_o_eq
unpack_r_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
iff
(
x2
x4
x5
)
(
x3
x4
x5
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_r_o
(
pack_r
x1
x2
)
x0
=
x0
x1
x2
Theorem
b47fa..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
unpack_r_o
(
pack_r
x0
x1
)
(
λ x3 .
λ x4 :
ι →
ι → ο
.
and
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
x4
x5
x6
⟶
x4
x6
x5
)
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
x4
x5
x6
⟶
x4
x6
x7
⟶
x4
x5
x7
)
)
=
and
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
⟶
x1
x4
x3
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x1
x3
x4
⟶
x1
x4
x5
⟶
x1
x3
x5
)
(proof)
Theorem
a3466..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x4
⟶
x1
x2
x4
)
⟶
PER
(
pack_r
x0
x1
)
(proof)
Known
259fb..
MetaCat_struct_r_per
:
MetaCat
PER
BinRelnHom
struct_id
struct_comp
Known
1b780..
MetaCat_struct_r_per_Forgetful
:
MetaFunctor
PER
BinRelnHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
Theorem
0bd5c..
:
∀ x0 .
PER
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x4
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x6
⟶
x3
x4
x6
)
⟶
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
(proof)
Theorem
bf553..
MetaCat_struct_r_per_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
PER
BinRelnHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
8dcfe..
MetaCat_struct_r_per_left_adjoint_forgetful
:
∀ x0 : ο .
(
∀ x1 :
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι → ι
.
MetaAdjunction_strict
(
λ x8 .
True
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
PER
BinRelnHom
struct_id
struct_comp
x1
x3
(
λ x8 .
ap
x8
0
)
(
λ x8 x9 x10 .
x10
)
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
743bb..
MetaCat_struct_r_per_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
PER
BinRelnHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
EquivReln
struct_r_equivreln
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
and
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
x3
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x5
⟶
x2
x3
x5
)
)
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
7e6b7..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
unpack_r_o
(
pack_r
x0
x1
)
(
λ x3 .
λ x4 :
ι →
ι → ο
.
and
(
and
(
∀ x5 .
x5
∈
x3
⟶
x4
x5
x5
)
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
x4
x5
x6
⟶
x4
x6
x5
)
)
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
x4
x5
x6
⟶
x4
x6
x7
⟶
x4
x5
x7
)
)
=
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
x3
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
⟶
x1
x4
x3
)
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x1
x3
x4
⟶
x1
x4
x5
⟶
x1
x3
x5
)
(proof)
Theorem
517b3..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
x1
x2
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x4
⟶
x1
x2
x4
)
⟶
EquivReln
(
pack_r
x0
x1
)
(proof)
Theorem
909a7..
:
∀ x0 .
EquivReln
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x2
⟶
x3
x4
x4
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x4
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x6
⟶
x3
x4
x6
)
⟶
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
(proof)
Known
ca919..
MetaCat_struct_r_equivreln
:
MetaCat
EquivReln
BinRelnHom
struct_id
struct_comp
Known
a8025..
MetaCat_struct_r_equivreln_Forgetful
:
MetaFunctor
EquivReln
BinRelnHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
Theorem
ae77a..
MetaCat_struct_r_equivreln_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
EquivReln
BinRelnHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
80d3d..
MetaCat_struct_r_equivreln_left_adjoint_forgetful
:
∀ x0 : ο .
(
∀ x1 :
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι → ι
.
MetaAdjunction_strict
(
λ x8 .
True
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
EquivReln
BinRelnHom
struct_id
struct_comp
x1
x3
(
λ x8 .
ap
x8
0
)
(
λ x8 x9 x10 .
x10
)
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
5dc25..
MetaCat_struct_r_equivreln_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
EquivReln
BinRelnHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
IrreflexiveTransitiveReln
struct_r_partialord
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
∀ x3 .
x3
∈
x1
⟶
not
(
x2
x3
x3
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x5
⟶
x2
x3
x5
)
)
)
Theorem
ef0db..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
unpack_r_o
(
pack_r
x0
x1
)
(
λ x3 .
λ x4 :
ι →
ι → ο
.
and
(
∀ x5 .
x5
∈
x3
⟶
not
(
x4
x5
x5
)
)
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
x4
x5
x6
⟶
x4
x6
x7
⟶
x4
x5
x7
)
)
=
and
(
∀ x3 .
x3
∈
x0
⟶
not
(
x1
x3
x3
)
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x1
x3
x4
⟶
x1
x4
x5
⟶
x1
x3
x5
)
(proof)
Theorem
b25e7..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
not
(
x1
x2
x2
)
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x4
⟶
x1
x2
x4
)
⟶
IrreflexiveTransitiveReln
(
pack_r
x0
x1
)
(proof)
Theorem
af4aa..
:
∀ x0 .
IrreflexiveTransitiveReln
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x2
⟶
not
(
x3
x4
x4
)
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x6
⟶
x3
x4
x6
)
⟶
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
(proof)
Known
c6620..
MetaCat_struct_r_partialord
:
MetaCat
IrreflexiveTransitiveReln
BinRelnHom
struct_id
struct_comp
Known
c7aa1..
MetaCat_struct_r_partialord_Forgetful
:
MetaFunctor
IrreflexiveTransitiveReln
BinRelnHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
Theorem
123cf..
MetaCat_struct_r_partialord_left_adjoint_forgetful
:
∀ x0 : ο .
(
∀ x1 :
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι → ι
.
MetaAdjunction_strict
(
λ x8 .
True
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
IrreflexiveTransitiveReln
BinRelnHom
struct_id
struct_comp
x1
x3
(
λ x8 .
ap
x8
0
)
(
λ x8 x9 x10 .
x10
)
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
f3af9..
MetaCat_struct_r_partialord_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
IrreflexiveTransitiveReln
BinRelnHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
IrreflexiveSymmetricReln
struct_r_graph
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
∀ x3 .
x3
∈
x1
⟶
not
(
x2
x3
x3
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
)
)
Theorem
5344f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
unpack_r_o
(
pack_r
x0
x1
)
(
λ x3 .
λ x4 :
ι →
ι → ο
.
and
(
∀ x5 .
x5
∈
x3
⟶
not
(
x4
x5
x5
)
)
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
x4
x5
x6
⟶
x4
x6
x5
)
)
=
and
(
∀ x3 .
x3
∈
x0
⟶
not
(
x1
x3
x3
)
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
⟶
x1
x4
x3
)
(proof)
Theorem
36176..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
not
(
x1
x2
x2
)
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
IrreflexiveSymmetricReln
(
pack_r
x0
x1
)
(proof)
Known
71675..
MetaCat_struct_r_graph
:
MetaCat
IrreflexiveSymmetricReln
BinRelnHom
struct_id
struct_comp
Known
1299d..
MetaCat_struct_r_graph_Forgetful
:
MetaFunctor
IrreflexiveSymmetricReln
BinRelnHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
Theorem
1e88d..
MetaCat_struct_r_graph_left_adjoint_forgetful
:
∀ x0 : ο .
(
∀ x1 :
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι → ι
.
MetaAdjunction_strict
(
λ x8 .
True
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
IrreflexiveSymmetricReln
BinRelnHom
struct_id
struct_comp
x1
x3
(
λ x8 .
ap
x8
0
)
(
λ x8 x9 x10 .
x10
)
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
fc401..
MetaCat_struct_r_graph_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
IrreflexiveSymmetricReln
BinRelnHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
pack_c
pack_c
:
ι
→
(
(
ι
→
ο
) →
ο
) →
ι
Definition
struct_c
struct_c
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
x1
(
pack_c
x2
x3
)
)
⟶
x1
x0
Param
PreContinuousHom
Hom_struct_c
:
ι
→
ι
→
ι
→
ο
Known
ed6b5..
MetaCat_struct_c
:
MetaCat
struct_c
PreContinuousHom
struct_id
struct_comp
Known
803c1..
MetaCat_struct_c_Forgetful
:
MetaFunctor
struct_c
PreContinuousHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
Known
pack_struct_c_I
pack_struct_c_I
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
struct_c
(
pack_c
x0
x1
)
Known
pack_c_0_eq2
pack_c_0_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
x0
=
ap
(
pack_c
x0
x1
)
0
Known
5059f..
Hom_struct_c_pack
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 .
PreContinuousHom
(
pack_c
x0
x2
)
(
pack_c
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
x7
∈
x1
)
⟶
x3
x6
⟶
x2
(
λ x7 .
and
(
x7
∈
x0
)
(
x6
(
ap
x4
x7
)
)
)
)
Theorem
40a5e..
MetaCat_struct_c_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
struct_c
PreContinuousHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
5da2f..
MetaCat_struct_c_left_adjoint_forgetful
:
∀ x0 : ο .
(
∀ x1 :
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι → ι
.
MetaAdjunction_strict
(
λ x8 .
True
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
struct_c
PreContinuousHom
struct_id
struct_comp
x1
x3
(
λ x8 .
ap
x8
0
)
(
λ x8 x9 x10 .
x10
)
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
05e4b..
MetaCat_struct_c_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
struct_c
PreContinuousHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
previous assets