Search for blocks/addresses/...

Proofgold Address

address
PUgKe375RCbJHpBzTor9gd2pGDPzYTHY4ML
total
0
mg
-
conjpub
-
current assets
2c17c../e6f27.. bday: 48187 doc published by PrGM6..
Param 455db.. : (ιιο) → ιιιιιιο
Param cbd9e.. : (ιιο) → ιιιιιιιιο
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Param 86706.. : ι(ιιο) → ο
Param 35fb6.. : ι(ιιο) → ο
Known 49b9e.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1∀ x15 . x15x1(∀ x16 . x16x1∀ x17 . x17x1x0 x16 x17x0 x17 x16)(x2 = x8∀ x16 : ο . x16)(x3 = x8∀ x16 : ο . x16)(x4 = x8∀ x16 : ο . x16)(x5 = x8∀ x16 : ο . x16)(x6 = x8∀ x16 : ο . x16)(x7 = x8∀ x16 : ο . x16)(x2 = x9∀ x16 : ο . x16)(x3 = x9∀ x16 : ο . x16)(x4 = x9∀ x16 : ο . x16)(x5 = x9∀ x16 : ο . x16)(x6 = x9∀ x16 : ο . x16)(x7 = x9∀ x16 : ο . x16)(x2 = x10∀ x16 : ο . x16)(x3 = x10∀ x16 : ο . x16)(x4 = x10∀ x16 : ο . x16)(x5 = x10∀ x16 : ο . x16)(x6 = x10∀ x16 : ο . x16)(x7 = x10∀ x16 : ο . x16)(x2 = x11∀ x16 : ο . x16)(x3 = x11∀ x16 : ο . x16)(x4 = x11∀ x16 : ο . x16)(x5 = x11∀ x16 : ο . x16)(x6 = x11∀ x16 : ο . x16)(x7 = x11∀ x16 : ο . x16)(x2 = x12∀ x16 : ο . x16)(x3 = x12∀ x16 : ο . x16)(x4 = x12∀ x16 : ο . x16)(x5 = x12∀ x16 : ο . x16)(x6 = x12∀ x16 : ο . x16)(x7 = x12∀ x16 : ο . x16)(x2 = x13∀ x16 : ο . x16)(x3 = x13∀ x16 : ο . x16)(x4 = x13∀ x16 : ο . x16)(x5 = x13∀ x16 : ο . x16)(x6 = x13∀ x16 : ο . x16)(x7 = x13∀ x16 : ο . x16)(x2 = x14∀ x16 : ο . x16)(x3 = x14∀ x16 : ο . x16)(x4 = x14∀ x16 : ο . x16)(x5 = x14∀ x16 : ο . x16)(x6 = x14∀ x16 : ο . x16)(x7 = x14∀ x16 : ο . x16)(x2 = x15∀ x16 : ο . x16)(x3 = x15∀ x16 : ο . x16)(x4 = x15∀ x16 : ο . x16)(x5 = x15∀ x16 : ο . x16)(x6 = x15∀ x16 : ο . x16)(x7 = x15∀ x16 : ο . x16)455db.. x0 x2 x3 x4 x5 x6 x7cbd9e.. (λ x16 x17 . not (x0 x16 x17)) x8 x9 x10 x11 x12 x13 x14 x1586706.. x1 x035fb6.. x1 x0(x0 x2 x8not (x0 x2 x15)False)(x0 x2 x9not (x0 x2 x10)False)(x0 x2 x8x0 x7 x8not (x0 x7 x15)False)False
Known d876b.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0455db.. x1 x2 x3 x4 x5 x6 x7455db.. x1 x2 x4 x3 x6 x5 x7
Known 22a46.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0cbd9e.. x1 x2 x3 x4 x5 x6 x7 x8 x9cbd9e.. x1 x9 x8 x7 x6 x5 x4 x3 x2
Theorem ce95b.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1∀ x15 . x15x1(∀ x16 . x16x1∀ x17 . x17x1x0 x16 x17x0 x17 x16)(x2 = x8∀ x16 : ο . x16)(x3 = x8∀ x16 : ο . x16)(x4 = x8∀ x16 : ο . x16)(x5 = x8∀ x16 : ο . x16)(x6 = x8∀ x16 : ο . x16)(x7 = x8∀ x16 : ο . x16)(x2 = x9∀ x16 : ο . x16)(x3 = x9∀ x16 : ο . x16)(x4 = x9∀ x16 : ο . x16)(x5 = x9∀ x16 : ο . x16)(x6 = x9∀ x16 : ο . x16)(x7 = x9∀ x16 : ο . x16)(x2 = x10∀ x16 : ο . x16)(x3 = x10∀ x16 : ο . x16)(x4 = x10∀ x16 : ο . x16)(x5 = x10∀ x16 : ο . x16)(x6 = x10∀ x16 : ο . x16)(x7 = x10∀ x16 : ο . x16)(x2 = x11∀ x16 : ο . x16)(x3 = x11∀ x16 : ο . x16)(x4 = x11∀ x16 : ο . x16)(x5 = x11∀ x16 : ο . x16)(x6 = x11∀ x16 : ο . x16)(x7 = x11∀ x16 : ο . x16)(x2 = x12∀ x16 : ο . x16)(x3 = x12∀ x16 : ο . x16)(x4 = x12∀ x16 : ο . x16)(x5 = x12∀ x16 : ο . x16)(x6 = x12∀ x16 : ο . x16)(x7 = x12∀ x16 : ο . x16)(x2 = x13∀ x16 : ο . x16)(x3 = x13∀ x16 : ο . x16)(x4 = x13∀ x16 : ο . x16)(x5 = x13∀ x16 : ο . x16)(x6 = x13∀ x16 : ο . x16)(x7 = x13∀ x16 : ο . x16)(x2 = x14∀ x16 : ο . x16)(x3 = x14∀ x16 : ο . x16)(x4 = x14∀ x16 : ο . x16)(x5 = x14∀ x16 : ο . x16)(x6 = x14∀ x16 : ο . x16)(x7 = x14∀ x16 : ο . x16)(x2 = x15∀ x16 : ο . x16)(x3 = x15∀ x16 : ο . x16)(x4 = x15∀ x16 : ο . x16)(x5 = x15∀ x16 : ο . x16)(x6 = x15∀ x16 : ο . x16)(x7 = x15∀ x16 : ο . x16)455db.. x0 x2 x3 x4 x5 x6 x7cbd9e.. (λ x16 x17 . not (x0 x16 x17)) x8 x9 x10 x11 x12 x13 x14 x1586706.. x1 x035fb6.. x1 x0(x0 x2 x15not (x0 x2 x8)False)(x0 x2 x15x0 x7 x15not (x0 x7 x8)False)(x0 x2 x14not (x0 x2 x13)False)False
...

Known 35806.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0cbd9e.. x1 x2 x3 x4 x5 x6 x7 x8 x9cbd9e.. x1 x2 x4 x3 x6 x5 x8 x7 x9
Theorem d0365.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1∀ x15 . x15x1(∀ x16 . x16x1∀ x17 . x17x1x0 x16 x17x0 x17 x16)(x2 = x8∀ x16 : ο . x16)(x3 = x8∀ x16 : ο . x16)(x4 = x8∀ x16 : ο . x16)(x5 = x8∀ x16 : ο . x16)(x6 = x8∀ x16 : ο . x16)(x7 = x8∀ x16 : ο . x16)(x2 = x9∀ x16 : ο . x16)(x3 = x9∀ x16 : ο . x16)(x4 = x9∀ x16 : ο . x16)(x5 = x9∀ x16 : ο . x16)(x6 = x9∀ x16 : ο . x16)(x7 = x9∀ x16 : ο . x16)(x2 = x10∀ x16 : ο . x16)(x3 = x10∀ x16 : ο . x16)(x4 = x10∀ x16 : ο . x16)(x5 = x10∀ x16 : ο . x16)(x6 = x10∀ x16 : ο . x16)(x7 = x10∀ x16 : ο . x16)(x2 = x11∀ x16 : ο . x16)(x3 = x11∀ x16 : ο . x16)(x4 = x11∀ x16 : ο . x16)(x5 = x11∀ x16 : ο . x16)(x6 = x11∀ x16 : ο . x16)(x7 = x11∀ x16 : ο . x16)(x2 = x12∀ x16 : ο . x16)(x3 = x12∀ x16 : ο . x16)(x4 = x12∀ x16 : ο . x16)(x5 = x12∀ x16 : ο . x16)(x6 = x12∀ x16 : ο . x16)(x7 = x12∀ x16 : ο . x16)(x2 = x13∀ x16 : ο . x16)(x3 = x13∀ x16 : ο . x16)(x4 = x13∀ x16 : ο . x16)(x5 = x13∀ x16 : ο . x16)(x6 = x13∀ x16 : ο . x16)(x7 = x13∀ x16 : ο . x16)(x2 = x14∀ x16 : ο . x16)(x3 = x14∀ x16 : ο . x16)(x4 = x14∀ x16 : ο . x16)(x5 = x14∀ x16 : ο . x16)(x6 = x14∀ x16 : ο . x16)(x7 = x14∀ x16 : ο . x16)(x2 = x15∀ x16 : ο . x16)(x3 = x15∀ x16 : ο . x16)(x4 = x15∀ x16 : ο . x16)(x5 = x15∀ x16 : ο . x16)(x6 = x15∀ x16 : ο . x16)(x7 = x15∀ x16 : ο . x16)455db.. x0 x2 x3 x4 x5 x6 x7cbd9e.. (λ x16 x17 . not (x0 x16 x17)) x8 x9 x10 x11 x12 x13 x14 x1586706.. x1 x035fb6.. x1 x0(x0 x2 x15not (x0 x2 x8)False)(x0 x2 x15x0 x7 x15not (x0 x7 x8)False)False
...

Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Theorem 9a04c.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1∀ x15 . x15x1(∀ x16 . x16x1∀ x17 . x17x1x0 x16 x17x0 x17 x16)(x2 = x8∀ x16 : ο . x16)(x3 = x8∀ x16 : ο . x16)(x4 = x8∀ x16 : ο . x16)(x5 = x8∀ x16 : ο . x16)(x6 = x8∀ x16 : ο . x16)(x7 = x8∀ x16 : ο . x16)(x2 = x9∀ x16 : ο . x16)(x3 = x9∀ x16 : ο . x16)(x4 = x9∀ x16 : ο . x16)(x5 = x9∀ x16 : ο . x16)(x6 = x9∀ x16 : ο . x16)(x7 = x9∀ x16 : ο . x16)(x2 = x10∀ x16 : ο . x16)(x3 = x10∀ x16 : ο . x16)(x4 = x10∀ x16 : ο . x16)(x5 = x10∀ x16 : ο . x16)(x6 = x10∀ x16 : ο . x16)(x7 = x10∀ x16 : ο . x16)(x2 = x11∀ x16 : ο . x16)(x3 = x11∀ x16 : ο . x16)(x4 = x11∀ x16 : ο . x16)(x5 = x11∀ x16 : ο . x16)(x6 = x11∀ x16 : ο . x16)(x7 = x11∀ x16 : ο . x16)(x2 = x12∀ x16 : ο . x16)(x3 = x12∀ x16 : ο . x16)(x4 = x12∀ x16 : ο . x16)(x5 = x12∀ x16 : ο . x16)(x6 = x12∀ x16 : ο . x16)(x7 = x12∀ x16 : ο . x16)(x2 = x13∀ x16 : ο . x16)(x3 = x13∀ x16 : ο . x16)(x4 = x13∀ x16 : ο . x16)(x5 = x13∀ x16 : ο . x16)(x6 = x13∀ x16 : ο . x16)(x7 = x13∀ x16 : ο . x16)(x2 = x14∀ x16 : ο . x16)(x3 = x14∀ x16 : ο . x16)(x4 = x14∀ x16 : ο . x16)(x5 = x14∀ x16 : ο . x16)(x6 = x14∀ x16 : ο . x16)(x7 = x14∀ x16 : ο . x16)(x2 = x15∀ x16 : ο . x16)(x3 = x15∀ x16 : ο . x16)(x4 = x15∀ x16 : ο . x16)(x5 = x15∀ x16 : ο . x16)(x6 = x15∀ x16 : ο . x16)(x7 = x15∀ x16 : ο . x16)455db.. x0 x2 x3 x4 x5 x6 x7cbd9e.. (λ x16 x17 . not (x0 x16 x17)) x8 x9 x10 x11 x12 x13 x14 x1586706.. x1 x035fb6.. x1 x0False
...


previous assets