Search for blocks/addresses/...

Proofgold Address

address
PUh9N4yscDK4V9zFyh6SQ6xD8WCBTKyKmGw
total
0
mg
-
conjpub
-
current assets
ddad9../33c42.. bday: 1168 doc published by PrGxv..
Known b4782..contra : ∀ x0 : ο . (not x0False)x0
Known andEandE : ∀ x0 x1 : ο . and x0 x1∀ x2 : ο . (x0x1x2)x2
Known eb789..andER : ∀ x0 x1 : ο . and x0 x1x1
Known 13bcd..iff_def : iff = λ x1 x2 : ο . and (x1x2) (x2x1)
Known 50594..iffEL : ∀ x0 x1 : ο . iff x0 x1x0x1
Known 93720..iffER : ∀ x0 x1 : ο . iff x0 x1x1x0
Known 7c02f..andI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem cd5b6..exandI_i : ∀ x0 x1 : ι → ο . ∀ x2 . x0 x2x1 x2∀ x3 : ο . (∀ x4 . and (x0 x4) (x1 x4)x3)x3 (proof)
Theorem 61640..exandE_i : ∀ x0 x1 : ι → ο . (∀ x2 : ο . (∀ x3 . and (x0 x3) (x1 x3)x2)x2)∀ x2 : ο . (∀ x3 . x0 x3x1 x3x2)x2 (proof)
Known c1173..Subq_def : Subq = λ x1 x2 . ∀ x3 . In x3 x1In x3 x2
Known b0dce..SubqI : ∀ x0 x1 . (∀ x2 . In x2 x0In x2 x1)Subq x0 x1
Known 367e6..SubqE : ∀ x0 x1 . Subq x0 x1∀ x2 . In x2 x0In x2 x1
Theorem e3c91..tab_pos_Subq : ∀ x0 x1 . Subq x0 x1((∀ x2 . In x2 x0In x2 x1)False)False (proof)
Theorem 71338..tab_neg_Subq : ∀ x0 x1 . not (Subq x0 x1)(not (∀ x2 . In x2 x0In x2 x1)False)False (proof)
Known 5f38d..TransSet_def : TransSet = λ x1 . ∀ x2 . In x2 x1Subq x2 x1
Theorem 79a81..TransSetI : ∀ x0 . (∀ x1 . In x1 x0Subq x1 x0)TransSet x0 (proof)
Theorem 2fc4a..TransSetE : ∀ x0 . TransSet x0∀ x1 . In x1 x0Subq x1 x0 (proof)
Known 4705c..atleast2_def : atleast2 = λ x1 . ∀ x2 : ο . (∀ x3 . and (In x3 x1) (not (Subq x1 (Power x3)))x2)x2
Theorem c2ced..atleast2_I : ∀ x0 x1 . In x1 x0not (Subq x0 (Power x1))atleast2 x0 (proof)
Theorem ffa80..atleast2_E : ∀ x0 . atleast2 x0∀ x1 : ο . (∀ x2 . and (In x2 x0) (not (Subq x0 (Power x2)))x1)x1 (proof)
Known 98887..atleast3_def : atleast3 = λ x1 . ∀ x2 : ο . (∀ x3 . and (Subq x3 x1) (and (not (Subq x1 x3)) (atleast2 x3))x2)x2
Theorem 6b4a4..atleast3_I : ∀ x0 x1 . Subq x1 x0not (Subq x0 x1)atleast2 x1atleast3 x0 (proof)
Theorem 218d1..atleast3_E : ∀ x0 . atleast3 x0∀ x1 : ο . (∀ x2 . and (Subq x2 x0) (and (not (Subq x0 x2)) (atleast2 x2))x1)x1 (proof)
Known d27ea..atleast4_def : atleast4 = λ x1 . ∀ x2 : ο . (∀ x3 . and (Subq x3 x1) (and (not (Subq x1 x3)) (atleast3 x3))x2)x2
Theorem 649d8..atleast4_I : ∀ x0 x1 . Subq x1 x0not (Subq x0 x1)atleast3 x1atleast4 x0 (proof)
Theorem 2dcf7..atleast4_E : ∀ x0 . atleast4 x0∀ x1 : ο . (∀ x2 . and (Subq x2 x0) (and (not (Subq x0 x2)) (atleast3 x2))x1)x1 (proof)
Known 22d74..atleast5_def : atleast5 = λ x1 . ∀ x2 : ο . (∀ x3 . and (Subq x3 x1) (and (not (Subq x1 x3)) (atleast4 x3))x2)x2
Theorem 6ece7..atleast5_I : ∀ x0 x1 . Subq x1 x0not (Subq x0 x1)atleast4 x1atleast5 x0 (proof)
Theorem ee384..atleast5_E : ∀ x0 . atleast5 x0∀ x1 : ο . (∀ x2 . and (Subq x2 x0) (and (not (Subq x0 x2)) (atleast4 x2))x1)x1 (proof)
Known 30e9c..atleast6_def : atleast6 = λ x1 . ∀ x2 : ο . (∀ x3 . and (Subq x3 x1) (and (not (Subq x1 x3)) (atleast5 x3))x2)x2
Theorem 500a3..atleast6_I : ∀ x0 x1 . Subq x1 x0not (Subq x0 x1)atleast5 x1atleast6 x0 (proof)
Theorem 5a74c..atleast6_E : ∀ x0 . atleast6 x0∀ x1 : ο . (∀ x2 . and (Subq x2 x0) (and (not (Subq x0 x2)) (atleast5 x2))x1)x1 (proof)
Known 71a28..exactly2_def : exactly2 = λ x1 . and (atleast2 x1) (not (atleast3 x1))
Theorem 0570d..exactly2_I : ∀ x0 . atleast2 x0not (atleast3 x0)exactly2 x0 (proof)
Theorem 84897..exactly2_E : ∀ x0 . exactly2 x0and (atleast2 x0) (not (atleast3 x0)) (proof)
Known f9659..exactly3_def : exactly3 = λ x1 . and (atleast3 x1) (not (atleast4 x1))
Theorem f2d7f..exactly3_I : ∀ x0 . atleast3 x0not (atleast4 x0)exactly3 x0 (proof)
Theorem 151e5..exactly3_E : ∀ x0 . exactly3 x0and (atleast3 x0) (not (atleast4 x0)) (proof)
Known 5d30c..exactly4_def : exactly4 = λ x1 . and (atleast4 x1) (not (atleast5 x1))
Theorem 3654c..exactly4_I : ∀ x0 . atleast4 x0not (atleast5 x0)exactly4 x0 (proof)
Theorem 01602..exactly4_E : ∀ x0 . exactly4 x0and (atleast4 x0) (not (atleast5 x0)) (proof)
Known 50102..exactly5_def : exactly5 = λ x1 . and (atleast5 x1) (not (atleast6 x1))
Theorem 15f81..exactly5_I : ∀ x0 . atleast5 x0not (atleast6 x0)exactly5 x0 (proof)
Theorem 2d4be..exactly5_E : ∀ x0 . exactly5 x0and (atleast5 x0) (not (atleast6 x0)) (proof)
Known 382c5..nIn_def : nIn = λ x1 x2 . not (In x1 x2)
Theorem 6abef..nIn_I : ∀ x0 x1 . not (In x0 x1)nIn x0 x1 (proof)
Theorem f0129..nIn_E : ∀ x0 x1 . nIn x0 x1not (In x0 x1) (proof)
Known 8106d..notI : ∀ x0 : ο . (x0False)not x0
Theorem 9d2e6..nIn_I2 : ∀ x0 x1 . (In x0 x1False)nIn x0 x1 (proof)
Known notEnotE : ∀ x0 : ο . not x0x0False
Theorem 24526..nIn_E2 : ∀ x0 x1 . nIn x0 x1In x0 x1False (proof)
Theorem 085e3..contra_In : ∀ x0 x1 . (nIn x0 x1False)In x0 x1 (proof)
Theorem ef881..neg_nIn : ∀ x0 x1 . not (nIn x0 x1)In x0 x1 (proof)
Known 557c1..nSubq_def : nSubq = λ x1 x2 . not (Subq x1 x2)
Theorem bbed8..nSubq_I : ∀ x0 x1 . not (Subq x0 x1)nSubq x0 x1 (proof)
Theorem 3f1de..nSubq_E : ∀ x0 x1 . nSubq x0 x1not (Subq x0 x1) (proof)
Theorem 579aa..nSubq_I2 : ∀ x0 x1 . (Subq x0 x1False)nSubq x0 x1 (proof)
Theorem b2a04..nSubq_E2 : ∀ x0 x1 . nSubq x0 x1Subq x0 x1False (proof)
Theorem 80eaf..neg_nSubq : ∀ x0 x1 . not (nSubq x0 x1)Subq x0 x1 (proof)
Theorem a82da..contra_Subq : ∀ x0 x1 . (nSubq x0 x1False)Subq x0 x1 (proof)
Theorem 2ad64..Subq_tra : ∀ x0 x1 x2 . Subq x0 x1Subq x1 x2Subq x0 x2 (proof)
Theorem a7ffa..Subq_contra : ∀ x0 x1 x2 . Subq x0 x1nIn x2 x1nIn x2 x0 (proof)
Known 2901c..EmptyE : ∀ x0 . In x0 0False
Theorem 3cfc3..nIn_Empty : ∀ x0 . nIn x0 0 (proof)
Known FalseEFalseE : False∀ x0 : ο . x0
Theorem b41a2..Subq_Empty : ∀ x0 . Subq 0 x0 (proof)
Known b3824..set_ext : ∀ x0 x1 . Subq x0 x1Subq x1 x0x0 = x1
Theorem d6778..Empty_Subq_eq : ∀ x0 . Subq x0 0x0 = 0 (proof)
Theorem d0de4..Empty_eq : ∀ x0 . (∀ x1 . nIn x1 x0)x0 = 0 (proof)
Known d182e..iffE : ∀ x0 x1 : ο . iff x0 x1∀ x2 : ο . (x0x1x2)(not x0not x1x2)x2
Known c7267..UnionEq : ∀ x0 x1 . iff (In x1 (Union x0)) (∀ x2 : ο . (∀ x3 . and (In x1 x3) (In x3 x0)x2)x2)
Theorem ce145..UnionE : ∀ x0 x1 . In x1 (Union x0)∀ x2 : ο . (∀ x3 . and (In x1 x3) (In x3 x0)x2)x2 (proof)
Theorem 2109a..UnionE2 : ∀ x0 x1 . In x1 (Union x0)∀ x2 : ο . (∀ x3 . In x1 x3In x3 x0x2)x2 (proof)
Theorem a4d26..UnionI : ∀ x0 x1 x2 . In x1 x2In x2 x0In x1 (Union x0) (proof)
Theorem eb828..tab_pos_Union : ∀ x0 x1 . In x1 (Union x0)(∀ x2 . In x1 x2In x2 x0False)False (proof)
Theorem f20e6..tab_neg_Union : ∀ x0 x1 x2 . nIn x1 (Union x0)(nIn x1 x2False)(nIn x2 x0False)False (proof)
Theorem fcac9..Union_Empty : Union 0 = 0 (proof)
Known ae89b..PowerE : ∀ x0 x1 . In x1 (Power x0)Subq x1 x0
Known 2d44a..PowerI : ∀ x0 x1 . Subq x1 x0In x1 (Power x0)
Theorem a71e8..tab_pos_Power : ∀ x0 x1 . In x1 (Power x0)(Subq x1 x0False)False (proof)
Theorem cd88a..tab_neg_Power : ∀ x0 x1 . nIn x1 (Power x0)(nSubq x1 x0False)False (proof)
Theorem f2c89..Empty_In_Power : ∀ x0 . In 0 (Power x0) (proof)
Known 0d4e6..ReplEq : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . iff (In x2 (Repl x0 x1)) (∀ x3 : ο . (∀ x4 . and (In x4 x0) (x2 = x1 x4)x3)x3)
Theorem 74a75..ReplE : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . In x2 (Repl x0 x1)∀ x3 : ο . (∀ x4 . and (In x4 x0) (x2 = x1 x4)x3)x3 (proof)
Theorem 0f096..ReplE2 : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . In x2 (Repl x0 x1)∀ x3 : ο . (∀ x4 . In x4 x0x2 = x1 x4x3)x3 (proof)
Theorem f1bf4..ReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . In x2 x0In (x1 x2) (Repl x0 x1) (proof)
Theorem c703f..tab_pos_Repl : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . In x2 (Repl x0 x1)(∀ x3 . In x3 x0x2 = x1 x3False)False (proof)
Theorem b0098..tab_neg_Repl : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . nIn x2 (Repl x0 x1)(nIn x3 x0False)(not (x2 = x1 x3)False)False (proof)
Theorem 8a1cd..Repl_Empty : ∀ x0 : ι → ι . Repl 0 x0 = 0 (proof)
Theorem 5a1ea..ReplEq_ext_sub : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . In x3 x0x1 x3 = x2 x3)Subq (Repl x0 x1) (Repl x0 x2) (proof)
Theorem 09697..ReplEq_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . In x3 x0x1 x3 = x2 x3)Repl x0 x1 = Repl x0 x2 (proof)

previous assets