Search for blocks/addresses/...
Proofgold Proposition
∀ x0 .
RealsStruct
x0
⟶
∀ x1 : ο .
(
RealsStruct_Npos
x0
⊆
field0
x0
⟶
explicit_Nats
(
RealsStruct_Npos
x0
)
(
RealsStruct_one
x0
)
(
λ x2 .
field1b
x0
x2
(
RealsStruct_one
x0
)
)
⟶
RealsStruct_one
x0
∈
RealsStruct_Npos
x0
⟶
(
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
field1b
x0
x2
(
RealsStruct_one
x0
)
=
RealsStruct_one
x0
⟶
∀ x3 : ο .
x3
)
⟶
(
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
∀ x3 :
ι → ο
.
x3
(
RealsStruct_one
x0
)
⟶
(
∀ x4 .
x4
∈
RealsStruct_Npos
x0
⟶
x3
(
field1b
x0
x4
(
RealsStruct_one
x0
)
)
)
⟶
x3
x2
)
⟶
(
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
∀ x3 .
x3
∈
RealsStruct_Npos
x0
⟶
explicit_Nats_one_plus
(
RealsStruct_Npos
x0
)
(
RealsStruct_one
x0
)
(
λ x5 .
field1b
x0
x5
(
RealsStruct_one
x0
)
)
x2
x3
=
field1b
x0
x2
x3
)
⟶
(
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
∀ x3 .
x3
∈
RealsStruct_Npos
x0
⟶
explicit_Nats_one_mult
(
RealsStruct_Npos
x0
)
(
RealsStruct_one
x0
)
(
λ x5 .
field1b
x0
x5
(
RealsStruct_one
x0
)
)
x2
x3
=
field2b
x0
x2
x3
)
⟶
(
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
∀ x3 .
x3
∈
RealsStruct_Npos
x0
⟶
field1b
x0
x2
x3
∈
RealsStruct_Npos
x0
)
⟶
(
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
∀ x3 .
x3
∈
RealsStruct_Npos
x0
⟶
field2b
x0
x2
x3
∈
RealsStruct_Npos
x0
)
⟶
x1
)
⟶
x1
type
prop
theory
HotG
name
RealsStruct_Npos_props
proof
PUSVY..
Megalodon
RealsStruct_Npos_props
proofgold address
TMLHJ..
RealsStruct_Npos_props
creator
5804
Pr6Pc..
/
4b25d..
owner
5804
Pr6Pc..
/
4b25d..
term root
ac462..