Search for blocks/addresses/...
Proofgold Term Root Disambiguation
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u6
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
x9
⊆
x0
⟶
x11
⊆
x0
⟶
x8
=
setminus
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x5
)
⟶
x10
=
setminus
(
DirGraphOutNeighbors
x0
x1
x5
)
(
Sing
x4
)
⟶
x9
=
{x13 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x13
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
x2
}
⟶
x11
=
setminus
{x13 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x13
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
x3
}
x10
⟶
(
∀ x12 .
x12
∈
x9
⟶
nIn
x12
x8
)
⟶
(
∀ x12 .
x12
∈
x9
⟶
nIn
x12
x11
)
⟶
(
∀ x12 .
x12
∈
x8
⟶
nIn
x12
x11
)
⟶
x6
∈
x9
⟶
x7
∈
x11
⟶
x1
x6
x7
⟶
∀ x12 x13 :
ι → ι
.
x1
x6
(
x12
x6
)
⟶
(
∀ x14 .
x14
∈
x8
⟶
x13
x14
∈
{x15 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x15
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
x2
}
)
⟶
(
∀ x14 .
x14
∈
x8
⟶
x12
(
x13
x14
)
=
x14
)
⟶
atleastp
x3
{x14 ∈
setminus
x9
(
Sing
x6
)
|
x1
(
x12
x14
)
x7
}
as obj
-
as prop
c283f..
theory
HotG
stx
486e0..
address
TMK8a..