Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
057e9..
PUSU5..
/
b0cd9..
vout
PrCit..
/
d3c4a..
3.93 bars
TMYWE..
/
fb2ac..
ownership of
c283f..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMK8a..
/
f0519..
ownership of
afd8b..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMGwb..
/
c185a..
ownership of
edcee..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMYZc..
/
41306..
ownership of
b4527..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PUesR..
/
a5476..
doc published by
Pr4zB..
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Param
u3
:
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
DirGraphOutNeighbors
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
λ x2 .
{x3 ∈
x0
|
and
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
(
x1
x2
x3
)
}
Param
Sing
Sing
:
ι
→
ι
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
equip
equip
:
ι
→
ι
→
ο
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Known
binintersectE
binintersectE
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
and
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
cfabd..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
x2
∈
DirGraphOutNeighbors
x0
x1
x3
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Param
SetAdjoin
SetAdjoin
:
ι
→
ι
→
ι
Param
UPair
UPair
:
ι
→
ι
→
ι
Known
aa241..
:
∀ x0 x1 x2 .
∀ x3 :
ι → ο
.
x3
x0
⟶
x3
x1
⟶
x3
x2
⟶
∀ x4 .
x4
∈
SetAdjoin
(
UPair
x0
x1
)
x2
⟶
x3
x4
Known
5d098..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
(
x1
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
(
x1
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
atleastp
u3
x0
Known
6be8c..
:
∀ x0 x1 x2 .
x0
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
535ce..
:
∀ x0 x1 x2 .
x1
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
f4e2f..
:
∀ x0 x1 x2 .
x2
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
edcee..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
x9
⊆
x0
⟶
x11
⊆
x0
⟶
x8
=
setminus
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x5
)
⟶
x10
=
setminus
(
DirGraphOutNeighbors
x0
x1
x5
)
(
Sing
x4
)
⟶
x9
=
{x13 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x13
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
x2
}
⟶
x11
=
setminus
{x13 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x13
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
x3
}
x10
⟶
(
∀ x12 .
x12
∈
x9
⟶
nIn
x12
x8
)
⟶
(
∀ x12 .
x12
∈
x9
⟶
nIn
x12
x11
)
⟶
(
∀ x12 .
x12
∈
x8
⟶
nIn
x12
x11
)
⟶
x6
∈
x9
⟶
x7
∈
x11
⟶
x1
x6
x7
⟶
∀ x12 x13 :
ι → ι
.
x1
x6
(
x12
x6
)
⟶
(
∀ x14 .
x14
∈
x8
⟶
x13
x14
∈
{x15 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x15
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
x2
}
)
⟶
(
∀ x14 .
x14
∈
x8
⟶
x12
(
x13
x14
)
=
x14
)
⟶
atleastp
x3
{x14 ∈
setminus
x9
(
Sing
x6
)
|
x1
(
x12
x14
)
x7
}
(proof)
Param
u6
:
ι
Theorem
c283f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u6
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
x9
⊆
x0
⟶
x11
⊆
x0
⟶
x8
=
setminus
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x5
)
⟶
x10
=
setminus
(
DirGraphOutNeighbors
x0
x1
x5
)
(
Sing
x4
)
⟶
x9
=
{x13 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x13
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
x2
}
⟶
x11
=
setminus
{x13 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x13
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
x3
}
x10
⟶
(
∀ x12 .
x12
∈
x9
⟶
nIn
x12
x8
)
⟶
(
∀ x12 .
x12
∈
x9
⟶
nIn
x12
x11
)
⟶
(
∀ x12 .
x12
∈
x8
⟶
nIn
x12
x11
)
⟶
x6
∈
x9
⟶
x7
∈
x11
⟶
x1
x6
x7
⟶
∀ x12 x13 :
ι → ι
.
x1
x6
(
x12
x6
)
⟶
(
∀ x14 .
x14
∈
x8
⟶
x13
x14
∈
{x15 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x15
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
x2
}
)
⟶
(
∀ x14 .
x14
∈
x8
⟶
x12
(
x13
x14
)
=
x14
)
⟶
atleastp
x3
{x14 ∈
setminus
x9
(
Sing
x6
)
|
x1
(
x12
x14
)
x7
}
(proof)