Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr7pr../93631..
PUPXB../ed909..
vout
Pr7pr../82a57.. 19.84 bars
TMLFZ../76362.. ownership of 313bd.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMcfB../d1900.. ownership of 4e74e.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMd1q../9300d.. ownership of e6dd5.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMVR1../1ddbe.. ownership of b278b.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
PUPya../fe4b7.. doc published by Pr6Pc..
Param explicit_Fieldexplicit_Field : ιιι(ιιι) → (ιιι) → ο
Param explicit_Field_minusexplicit_Field_minus : ιιι(ιιι) → (ιιι) → ιι
Known c888a.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 : ο . ((∀ x6 . x6x0explicit_Field_minus x0 x1 x2 x3 x4 x6x0)explicit_Field_minus x0 x1 x2 x3 x4 x1 = x1(∀ x6 . x6x0explicit_Field_minus x0 x1 x2 x3 x4 (explicit_Field_minus x0 x1 x2 x3 x4 x6) = x6)(∀ x6 . x6x0x3 (explicit_Field_minus x0 x1 x2 x3 x4 x6) x6 = x1)(∀ x6 . x6x0x3 x6 (explicit_Field_minus x0 x1 x2 x3 x4 x6) = x1)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 (x3 x6 x7) x8 = x3 (x4 x6 x8) (x4 x7 x8))(∀ x6 . x6x0∀ x7 . x7x0explicit_Field_minus x0 x1 x2 x3 x4 (x3 x6 x7) = x3 (explicit_Field_minus x0 x1 x2 x3 x4 x6) (explicit_Field_minus x0 x1 x2 x3 x4 x7))(∀ x6 . x6x0∀ x7 . x7x0x4 (explicit_Field_minus x0 x1 x2 x3 x4 x6) x7 = explicit_Field_minus x0 x1 x2 x3 x4 (x4 x6 x7))(∀ x6 . x6x0∀ x7 . x7x0x4 x6 (explicit_Field_minus x0 x1 x2 x3 x4 x7) = explicit_Field_minus x0 x1 x2 x3 x4 (x4 x6 x7))(∀ x6 . x6x0x4 x1 x6 = x1)(∀ x6 . x6x0x4 x6 x1 = x1)explicit_Field_minus x0 x1 x2 x3 x4 x2x0(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x4 x7 x8)x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x3 (x3 x6 x7) (x3 x8 x9) = x3 (x3 x6 x9) (x3 x7 x8))(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x3 (x3 x6 x7) (x3 x8 x9) = x3 (x3 x6 x8) (x3 x7 x9))x5)x5
Param explicit_Realsexplicit_Reals : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Param andand : οοο
Param ReplSep2ReplSep2 : ι(ιι) → (ιιο) → CT2 ι
Param TrueTrue : ο
Param SepSep : ι(ιο) → ι
Known 89287.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))∀ x7 : ο . ((∀ x8 . x8x0∀ x9 . x9x0x6 x8 x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 : ι → ο . (∀ x10 . x10x0∀ x11 . x11x0x8 = x6 x10 x11x9 (x6 x10 x11))x9 x8)(∀ x8 . x8x0∀ x9 . x9x0prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 x8 x9 = x6 x11 x13)x12)x12)) = x8)(∀ x8 . x8x0∀ x9 . x9x0prim0 (λ x11 . and (x11x0) (x6 x8 x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 x8 x9 = x6 x13 x15)x14)x14))) x11)) = x9)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10))x0)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9))x0)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6x8 = x6 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))))(∀ x8 . x8x0x6 x8 x1{x9 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6|x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12))) x1 = x9})(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12)) = prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12))prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11)) = prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11))x8 = x9)x6 x1 x1ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6x6 x2 x1ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6(∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0x6 (x3 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 x8 x9 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 x10 x11 = x6 x13 x15)x14)x14)))) (x3 (prim0 (λ x13 . and (x13x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x6 x8 x9 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x6 x10 x11 = x6 x15 x17)x16)x16))) x13)))) = x6 (x3 x8 x10) (x3 x9 x11))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))) (x3 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))) = x6 (x3 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))) (x3 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x9 = x6 x10 x12)x11)x11)))) (x3 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x9 = x6 x12 x14)x13)x13))) x10))))ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (x3 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) = x6 x11 x13)x12)x12)) = x3 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12))))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . and (x11x0) (x6 (x3 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (x3 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (x3 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) = x6 x13 x15)x14)x14))) x11)) = x3 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11))))(∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 x8 x9 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 x10 x11 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x6 x8 x9 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x6 x10 x11 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 x8 x9 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x6 x10 x11 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x6 x8 x9 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 x10 x11 = x6 x13 x15)x14)x14))))) = x6 (x3 (x4 x8 x10) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 x9 x11))) (x3 (x4 x8 x11) (x4 x9 x10)))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12))))) = x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12))))))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x3 (x4 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x9 = x6 x10 x12)x11)x11)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x9 = x6 x12 x14)x13)x13))) x10)))))x0)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x3 (x4 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x9 = x6 x12 x14)x13)x13))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x9 = x6 x10 x12)x11)x11))))x0)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x9 = x6 x10 x12)x11)x11)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x9 = x6 x12 x14)x13)x13))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x9 = x6 x12 x14)x13)x13))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x9 = x6 x10 x12)x11)x11)))))ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12)) = x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11))))))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11)) = x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))))x7)x7
Known 801dc.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . (∀ x7 . x7x0∀ x8 . x8x0x3 x7 x8x0)x1x0(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8x0)(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x4 x7 (x4 x8 x9) = x4 (x4 x7 x8) x9)(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8 = x4 x8 x7)x2x0(∀ x7 . x7x0(x7 = x1∀ x8 : ο . x8)∀ x8 : ο . (∀ x9 . and (x9x0) (x4 x7 x9 = x2)x8)x8)(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x4 x7 (x3 x8 x9) = x3 (x4 x7 x8) (x4 x7 x9))(∀ x7 . x7x0explicit_Field_minus x0 x1 x2 x3 x4 x7x0)(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x4 (x3 x7 x8) x9 = x3 (x4 x7 x9) (x4 x8 x9))(∀ x7 . x7x0∀ x8 . x8x0explicit_Field_minus x0 x1 x2 x3 x4 (x3 x7 x8) = x3 (explicit_Field_minus x0 x1 x2 x3 x4 x7) (explicit_Field_minus x0 x1 x2 x3 x4 x8))(∀ x7 . x7x0∀ x8 . x8x0x4 (explicit_Field_minus x0 x1 x2 x3 x4 x7) x8 = explicit_Field_minus x0 x1 x2 x3 x4 (x4 x7 x8))(∀ x7 . x7x0∀ x8 . x8x0x4 x7 (explicit_Field_minus x0 x1 x2 x3 x4 x8) = explicit_Field_minus x0 x1 x2 x3 x4 (x4 x7 x8))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6prim0 (λ x8 . and (x8x0) (∀ x9 : ο . (∀ x10 . and (x10x0) (x7 = x6 x8 x10)x9)x9))x0)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6prim0 (λ x8 . and (x8x0) (x7 = x6 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11))) x8))x0)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11)) = prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) x10)) = prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))x7 = x8)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6x6 (x3 (x4 (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9)))) (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10)))))ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x6 (x3 (x4 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . and (x14x0) (x7 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) x14))) (prim0 (λ x14 . and (x14x0) (x8 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17))) x14)))))) (x3 (x4 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) (prim0 (λ x14 . and (x14x0) (x8 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17))) x14)))) (x4 (prim0 (λ x14 . and (x14x0) (x7 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) x14))) (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15))))) = x6 x10 x12)x11)x11)) = x3 (x4 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (x6 (x3 (x4 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x12 . and (x12x0) (x7 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) x12))) (prim0 (λ x12 . and (x12x0) (x8 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15))) x12)))))) (x3 (x4 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) (prim0 (λ x12 . and (x12x0) (x8 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15))) x12)))) (x4 (prim0 (λ x12 . and (x12x0) (x7 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) x12))) (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))))) = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . and (x16x0) (x7 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x18 x20)x19)x19))) x16))) (prim0 (λ x16 . and (x16x0) (x8 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x18 x20)x19)x19))) x16)))))) (x3 (x4 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) (prim0 (λ x16 . and (x16x0) (x8 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x18 x20)x19)x19))) x16)))) (x4 (prim0 (λ x16 . and (x16x0) (x7 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x18 x20)x19)x19))) x16))) (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17))))) = x6 x12 x14)x13)x13))) x10)) = x3 (x4 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11)))))(∀ x7 . x7x0∀ x8 . x8x0x6 x7 x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6)(∀ x7 . x7x0∀ x8 . x8x0prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x6 x7 x8 = x6 x10 x12)x11)x11)) = x7)(∀ x7 . x7x0∀ x8 . x8x0prim0 (λ x10 . and (x10x0) (x6 x7 x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x6 x7 x8 = x6 x12 x14)x13)x13))) x10)) = x8)x6 x1 x1ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6x6 x2 x1ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6(∀ x7 . x7x0explicit_Field_minus x0 x1 x2 x3 x4 (explicit_Field_minus x0 x1 x2 x3 x4 x7) = x7)(∀ x7 . x7x0x3 (explicit_Field_minus x0 x1 x2 x3 x4 x7) x7 = x1)(∀ x7 . x7x0x4 x1 x7 = x1)(∀ x7 . x7x0∀ x8 . x8x0x3 (x4 x7 x7) (x4 x8 x8) = x1and (x7 = x1) (x8 = x1))∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6(x7 = x6 x1 x1∀ x8 : ο . x8)∀ x8 : ο . (∀ x9 . and (x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) (x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12))))) = x6 x2 x1)x8)x8
Known 35f8e.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . (∀ x7 . x7x0∀ x8 . x8x0x3 x7 x8x0)x1x0(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8x0)(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x4 x7 (x4 x8 x9) = x4 (x4 x7 x8) x9)(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8 = x4 x8 x7)x2x0(∀ x7 . x7x0(x7 = x1∀ x8 : ο . x8)∀ x8 : ο . (∀ x9 . and (x9x0) (x4 x7 x9 = x2)x8)x8)(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x4 x7 (x3 x8 x9) = x3 (x4 x7 x8) (x4 x7 x9))(∀ x7 . x7x0explicit_Field_minus x0 x1 x2 x3 x4 x7x0)(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x4 (x3 x7 x8) x9 = x3 (x4 x7 x9) (x4 x8 x9))(∀ x7 . x7x0∀ x8 . x8x0explicit_Field_minus x0 x1 x2 x3 x4 (x3 x7 x8) = x3 (explicit_Field_minus x0 x1 x2 x3 x4 x7) (explicit_Field_minus x0 x1 x2 x3 x4 x8))(∀ x7 . x7x0∀ x8 . x8x0x4 (explicit_Field_minus x0 x1 x2 x3 x4 x7) x8 = explicit_Field_minus x0 x1 x2 x3 x4 (x4 x7 x8))(∀ x7 . x7x0∀ x8 . x8x0x4 x7 (explicit_Field_minus x0 x1 x2 x3 x4 x8) = explicit_Field_minus x0 x1 x2 x3 x4 (x4 x7 x8))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6prim0 (λ x8 . and (x8x0) (∀ x9 : ο . (∀ x10 . and (x10x0) (x7 = x6 x8 x10)x9)x9))x0)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6prim0 (λ x8 . and (x8x0) (x7 = x6 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11))) x8))x0)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11)) = prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) x10)) = prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))x7 = x8)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6x6 (x3 (x4 (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9)))) (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10)))))ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x6 (x3 (x4 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . and (x14x0) (x7 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) x14))) (prim0 (λ x14 . and (x14x0) (x8 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17))) x14)))))) (x3 (x4 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) (prim0 (λ x14 . and (x14x0) (x8 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17))) x14)))) (x4 (prim0 (λ x14 . and (x14x0) (x7 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) x14))) (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15))))) = x6 x10 x12)x11)x11)) = x3 (x4 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (x6 (x3 (x4 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x12 . and (x12x0) (x7 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) x12))) (prim0 (λ x12 . and (x12x0) (x8 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15))) x12)))))) (x3 (x4 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) (prim0 (λ x12 . and (x12x0) (x8 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15))) x12)))) (x4 (prim0 (λ x12 . and (x12x0) (x7 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) x12))) (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))))) = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . and (x16x0) (x7 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x18 x20)x19)x19))) x16))) (prim0 (λ x16 . and (x16x0) (x8 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x18 x20)x19)x19))) x16)))))) (x3 (x4 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) (prim0 (λ x16 . and (x16x0) (x8 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x18 x20)x19)x19))) x16)))) (x4 (prim0 (λ x16 . and (x16x0) (x7 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x18 x20)x19)x19))) x16))) (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17))))) = x6 x12 x14)x13)x13))) x10)) = x3 (x4 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11)))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6x6 (x3 (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10)))) (x3 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9))))ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x6 (x3 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15)))) (x3 (prim0 (λ x14 . and (x14x0) (x7 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) x14))) (prim0 (λ x14 . and (x14x0) (x8 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17))) x14)))) = x6 x10 x12)x11)x11)) = x3 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (x6 (x3 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13)))) (x3 (prim0 (λ x12 . and (x12x0) (x7 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) x12))) (prim0 (λ x12 . and (x12x0) (x8 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15))) x12)))) = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x6 (x3 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17)))) (x3 (prim0 (λ x16 . and (x16x0) (x7 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x18 x20)x19)x19))) x16))) (prim0 (λ x16 . and (x16x0) (x8 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x18 x20)x19)x19))) x16)))) = x6 x12 x14)x13)x13))) x10)) = x3 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))))(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x3 (x3 x7 x8) (x3 x9 x10) = x3 (x3 x7 x9) (x3 x8 x10))∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (x3 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (x3 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (x3 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) = x6 x13 x15)x14)x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (x3 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (x3 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (x3 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) = x6 x11 x13)x12)x12))))) = x6 (x3 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12)))) (x3 (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11))))
Param explicit_OrderedFieldexplicit_OrderedField : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Param ltlt : ιιι(ιιι) → (ιιι) → (ιιο) → ιιο
Param natOfOrderedField_pnatOfOrderedField_p : ιιι(ιιι) → (ιιι) → (ιιο) → ιο
Param setexpsetexp : ιιι
Param apap : ιιι
Known explicit_Reals_Eexplicit_Reals_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ο . (explicit_Reals x0 x1 x2 x3 x4 x5explicit_OrderedField x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0lt x0 x1 x2 x3 x4 x5 x1 x7x5 x1 x8∀ x9 : ο . (∀ x10 . and (x10Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) (x5 x8 (x4 x10 x7))x9)x9)(∀ x7 . x7setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))∀ x8 . x8setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))(∀ x9 . x9Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (and (x5 (ap x7 x9) (ap x8 x9)) (x5 (ap x7 x9) (ap x7 (x3 x9 x2)))) (x5 (ap x8 (x3 x9 x2)) (ap x8 x9)))∀ x9 : ο . (∀ x10 . and (x10x0) (∀ x11 . x11Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (x5 (ap x7 x11) x10) (x5 x10 (ap x8 x11)))x9)x9)x6)explicit_Reals x0 x1 x2 x3 x4 x5x6
Param iffiff : οοο
Param oror : οοο
Known explicit_OrderedField_Eexplicit_OrderedField_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ο . (explicit_OrderedField x0 x1 x2 x3 x4 x5explicit_Field x0 x1 x2 x3 x4(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x5 x7 x8x5 x8 x9x5 x7 x9)(∀ x7 . x7x0∀ x8 . x8x0iff (and (x5 x7 x8) (x5 x8 x7)) (x7 = x8))(∀ x7 . x7x0∀ x8 . x8x0or (x5 x7 x8) (x5 x8 x7))(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x5 x7 x8x5 (x3 x7 x9) (x3 x8 x9))(∀ x7 . x7x0∀ x8 . x8x0x5 x1 x7x5 x1 x8x5 x1 (x4 x7 x8))x6)explicit_OrderedField x0 x1 x2 x3 x4 x5x6
Known explicit_Field_Eexplicit_Field_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ο . (explicit_Field x0 x1 x2 x3 x4(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x3 x6 (x3 x7 x8) = x3 (x3 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7 = x3 x7 x6)x1x0(∀ x6 . x6x0x3 x1 x6 = x6)(∀ x6 . x6x0∀ x7 : ο . (∀ x8 . and (x8x0) (x3 x6 x8 = x1)x7)x7)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x4 x7 x8) = x4 (x4 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7 = x4 x7 x6)x2x0(x2 = x1∀ x6 : ο . x6)(∀ x6 . x6x0x4 x2 x6 = x6)(∀ x6 . x6x0(x6 = x1∀ x7 : ο . x7)∀ x7 : ο . (∀ x8 . and (x8x0) (x4 x6 x8 = x2)x7)x7)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x3 x7 x8) = x3 (x4 x6 x7) (x4 x6 x8))x5)explicit_Field x0 x1 x2 x3 x4x5
Known explicit_OrderedField_sum_squares_zero_invexplicit_OrderedField_sum_squares_zero_inv : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5∀ x6 . x6x0∀ x7 . x7x0x3 (x4 x6 x6) (x4 x7 x7) = x1and (x6 = x1) (x7 = x1)
Theorem e6dd5.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6(x7 = x6 x1 x1∀ x8 : ο . x8)∀ x8 : ο . (∀ x9 . and (x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) (x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12))))) = x6 x2 x1)x8)x8 (proof)
Theorem 313bd.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (x3 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (x3 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (x3 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) = x6 x13 x15)x14)x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (x3 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (x3 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (x3 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) = x6 x11 x13)x12)x12))))) = x6 (x3 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12)))) (x3 (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11)))) (proof)