Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../c0872..
PUXC8../61460..
vout
PrCit../1d83e.. 4.79 bars
TMFnb../20be5.. ownership of bd9af.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMVcv../fdec5.. ownership of 4ea53.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNfq../1188d.. ownership of 5b07e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMMLU../1b5d5.. ownership of 3fcec.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUWvd../39cc1.. doc published by Pr4zB..
Param equipequip : ιιο
Param binunionbinunion : ιιι
Param SingSing : ιι
Definition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)
Param UPairUPair : ιιι
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known e8bc0..equip_adjoin_ordsucc : ∀ x0 x1 x2 . nIn x2 x1equip x0 x1equip (ordsucc x0) (binunion x1 (Sing x2))
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known 1aece.. : ∀ x0 x1 x2 x3 x4 . x4SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3∀ x5 : ι → ο . x5 x0x5 x1x5 x2x5 x3x5 x4
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known d9e1e.. : ∀ x0 x1 x2 x3 . (x0 = x1∀ x4 : ο . x4)(x0 = x2∀ x4 : ο . x4)(x0 = x3∀ x4 : ο . x4)(x1 = x2∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)equip (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) u4
Theorem 5b07e.. : ∀ x0 x1 x2 x3 x4 . (x0 = x1∀ x5 : ο . x5)(x0 = x2∀ x5 : ο . x5)(x0 = x3∀ x5 : ο . x5)(x0 = x4∀ x5 : ο . x5)(x1 = x2∀ x5 : ο . x5)(x1 = x3∀ x5 : ο . x5)(x1 = x4∀ x5 : ο . x5)(x2 = x3∀ x5 : ο . x5)(x2 = x4∀ x5 : ο . x5)(x3 = x4∀ x5 : ο . x5)equip (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) u5 (proof)
Param andand : οοο
Param SubqSubq : ιιο
Definition u6 := ordsucc u5
Definition u7 := ordsucc u6
Definition u8 := ordsucc u7
Definition u9 := ordsucc u8
Known e041c.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 : ο . (∀ x3 . x3u9∀ x4 . x4u9∀ x5 . x5u9(x1 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x1 = x5∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)(x3 = x5∀ x6 : ο . x6)(x4 = x5∀ x6 : ο . x6)x0 x1 x3x0 x1 x4x0 x1 x5not (x0 x3 x4)not (x0 x3 x5)not (x0 x4 x5)(∀ x6 . x6u9x0 x1 x6x6SetAdjoin (SetAdjoin (UPair x1 x3) x4) x5)x2)x2
Known f1644.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 . x2u9(x1 = x2∀ x3 : ο . x3)x0 x1 x2∀ x3 : ο . (∀ x4 . x4u9∀ x5 . x5u9(x1 = x4∀ x6 : ο . x6)(x1 = x5∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x2 = x5∀ x6 : ο . x6)(x4 = x5∀ x6 : ο . x6)x0 x1 x4x0 x1 x5not (x0 x2 x4)not (x0 x2 x5)not (x0 x4 x5)(∀ x6 . x6u9x0 x1 x6x6SetAdjoin (SetAdjoin (UPair x1 x2) x4) x5)x3)x3
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known FalseEFalseE : False∀ x0 : ο . x0
Param nat_pnat_p : ιο
Param atleastpatleastp : ιιο
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known nat_9nat_9 : nat_p 9
Definition u10 := ordsucc u9
Known d140d.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0(x1 = x2∀ x11 : ο . x11)(x1 = x3∀ x11 : ο . x11)(x2 = x3∀ x11 : ο . x11)(x1 = x4∀ x11 : ο . x11)(x2 = x4∀ x11 : ο . x11)(x3 = x4∀ x11 : ο . x11)(x1 = x5∀ x11 : ο . x11)(x2 = x5∀ x11 : ο . x11)(x3 = x5∀ x11 : ο . x11)(x4 = x5∀ x11 : ο . x11)(x1 = x6∀ x11 : ο . x11)(x2 = x6∀ x11 : ο . x11)(x3 = x6∀ x11 : ο . x11)(x4 = x6∀ x11 : ο . x11)(x5 = x6∀ x11 : ο . x11)(x1 = x7∀ x11 : ο . x11)(x2 = x7∀ x11 : ο . x11)(x3 = x7∀ x11 : ο . x11)(x4 = x7∀ x11 : ο . x11)(x5 = x7∀ x11 : ο . x11)(x6 = x7∀ x11 : ο . x11)(x1 = x8∀ x11 : ο . x11)(x2 = x8∀ x11 : ο . x11)(x3 = x8∀ x11 : ο . x11)(x4 = x8∀ x11 : ο . x11)(x5 = x8∀ x11 : ο . x11)(x6 = x8∀ x11 : ο . x11)(x7 = x8∀ x11 : ο . x11)(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)(x1 = x10∀ x11 : ο . x11)(x2 = x10∀ x11 : ο . x11)(x3 = x10∀ x11 : ο . x11)(x4 = x10∀ x11 : ο . x11)(x5 = x10∀ x11 : ο . x11)(x6 = x10∀ x11 : ο . x11)(x7 = x10∀ x11 : ο . x11)(x8 = x10∀ x11 : ο . x11)(x9 = x10∀ x11 : ο . x11)atleastp u10 x0
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known UPairEUPairE : ∀ x0 x1 x2 . x0UPair x1 x2or (x0 = x1) (x0 = x2)
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known UPairI1UPairI1 : ∀ x0 x1 . x0UPair x0 x1
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known SingISingI : ∀ x0 . x0Sing x0
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known UPairI2UPairI2 : ∀ x0 x1 . x1UPair x0 x1
Theorem bd9af.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 : ο . (∀ x3 . x3u9∀ x4 . x4u9∀ x5 . x5u9∀ x6 . x6u9(x1 = x3∀ x7 : ο . x7)(x1 = x4∀ x7 : ο . x7)(x1 = x5∀ x7 : ο . x7)(x1 = x6∀ x7 : ο . x7)(x3 = x4∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x3 = x6∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)(x4 = x6∀ x7 : ο . x7)(x5 = x6∀ x7 : ο . x7)x0 x1 x3x0 x1 x4x0 x1 x5not (x0 x3 x4)not (x0 x3 x5)not (x0 x4 x5)(∀ x7 . x7u9x0 x1 x7x7SetAdjoin (SetAdjoin (UPair x1 x3) x4) x5)x0 x6 x3x0 x6 x4x2)x2 (proof)