Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: dac20.. x0.
Apply H0 with d7e73.. x0.
Assume H1: 3f0d0.. x0.
Claim L2: c3510.. x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 x5 . explicit_CRing_with_id x1 x4 x5 x2 x3)c3510.. x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 x5 . explicit_Ring_with_id x1 x4 x5 x2 x3)
Apply H1 with λ x1 . c3510.. x1 (λ x2 . λ x3 x4 : ι → ι → ι . λ x5 x6 . explicit_CRing_with_id x2 x5 x6 x3 x4)c3510.. x1 (λ x2 . λ x3 x4 : ι → ι → ι . λ x5 x6 . explicit_Ring_with_id x2 x5 x6 x3 x4).
Let x1 of type ι be given.
Let x2 of type ιιι be given.
Assume H2: ∀ x3 . prim1 x3 x1∀ x4 . prim1 x4 x1prim1 (x2 x3 x4) x1.
Let x3 of type ιιι be given.
Assume H3: ∀ x4 . prim1 x4 x1∀ x5 . prim1 x5 x1prim1 (x3 x4 x5) x1.
Let x4 of type ι be given.
Assume H4: prim1 x4 x1.
Let x5 of type ι be given.
Assume H5: prim1 x5 x1.
Apply unknownprop_012ca8caa2f09e68def42ddb439cd4e9c3f98b6e2edd38830763ab994ab639cc with x1, x2, x3, x4, x5, λ x6 x7 : ο . x7c3510.. (c77b5.. x1 x2 x3 x4 x5) (λ x8 . λ x9 x10 : ι → ι → ι . λ x11 x12 . explicit_Ring_with_id x8 x11 x12 x9 x10).
Apply unknownprop_f2757170e44f67f7fbfc05bcf8ee9518d90964960839997db64166d5bcc81904 with x1, x2, x3, x4, x5, λ x6 x7 : ο . explicit_CRing_with_id x1 x4 x5 x2 x3x7.
The subproof is completed by applying explicit_CRing_with_id_Ring_with_id with x1, x4, x5, x2, x3.
Assume H3: c3510.. x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 x5 . explicit_CRing_with_id x1 x4 x5 x2 x3).
Apply andI with 3f0d0.. x0, c3510.. x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 x5 . explicit_Ring_with_id x1 x4 x5 x2 x3) leaving 2 subgoals.
The subproof is completed by applying H1.
Apply L2.
The subproof is completed by applying H3.