Search for blocks/addresses/...
Proofgold Address
address
PULzFSdhfZAdN2AmzqFRypxNVVdRikN9pEK
total
0
mg
-
conjpub
-
current assets
0ab25..
/
8ae21..
bday:
19311
doc published by
Pr4zB..
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Param
Church17_to_u17
:
CT17
ι
Definition
Church17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x0
x2
x4
x1
x3
x6
x8
x5
x7
x11
x9
x12
x10
x14
x15
x16
x13
Param
u17_to_Church17
:
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
Definition
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
:=
λ x0 .
Church17_to_u17
(
Church17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
(
u17_to_Church17
x0
)
)
Known
866c8..
:
∀ x0 .
x0
∈
u12
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
x0
Known
428fd..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
0
=
u1
Known
2b77d..
:
1
∈
12
Known
6eb3e..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u1
=
u3
Known
2f583..
:
3
∈
12
Known
00076..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u2
=
0
Known
46814..
:
0
∈
12
Known
737c8..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u3
=
u2
Known
7c2ac..
:
2
∈
12
Known
b5b60..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u4
=
u5
Known
04716..
:
5
∈
12
Known
d3a23..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u5
=
u7
Known
35d73..
:
7
∈
12
Known
9e037..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u6
=
u4
Known
e4fc0..
:
4
∈
12
Known
af667..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u7
=
u6
Known
fbe39..
:
6
∈
12
Known
86df1..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u8
=
u10
Known
42552..
:
10
∈
12
Known
1f384..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u9
=
u8
Known
5196c..
:
8
∈
12
Known
f964e..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u10
=
u11
Known
fee2e..
:
11
∈
12
Known
1f07b..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u11
=
u9
Known
4fa36..
:
9
∈
12
Theorem
bb2bc..
:
∀ x0 .
x0
∈
u12
⟶
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x0
∈
u12
(proof)
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
u16
:=
ordsucc
u15
Known
f2c34..
:
∀ x0 .
x0
∈
u16
⟶
∀ x1 .
x1
∈
u16
⟶
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x0
=
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x1
⟶
x0
=
x1
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Theorem
90895..
:
∀ x0 .
x0
∈
u12
⟶
∀ x1 .
x1
∈
u12
⟶
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x0
=
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x1
⟶
x0
=
x1
(proof)
Definition
u17
:=
ordsucc
u16
Definition
TwoRamseyGraph_3_6_Church17
:=
λ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x2 x3 .
x0
(
x1
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x3
)
(
x1
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x2
x3
x3
x3
x3
)
(
x1
x2
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x3
x2
x3
x3
)
(
x1
x3
x2
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x3
x2
x2
x2
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
)
(
x1
x3
x3
x2
x3
x2
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x3
x3
)
(
x1
x3
x2
x3
x3
x2
x3
x2
x2
x2
x3
x3
x3
x3
x3
x2
x3
x3
)
(
x1
x2
x3
x3
x3
x3
x2
x2
x2
x3
x2
x3
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
x2
x2
x2
x3
x3
x3
)
(
x1
x3
x3
x3
x2
x3
x3
x3
x2
x3
x2
x2
x3
x2
x3
x3
x2
x3
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x2
x3
x3
x2
x2
x3
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
x2
x3
x3
x2
x2
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x2
x3
x3
x2
x3
x3
x3
x2
)
(
x1
x3
x3
x3
x2
x3
x3
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x2
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
x2
x2
x3
x3
x2
x3
x2
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
x2
)
(
x1
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x2
x2
x2
x2
x2
)
Definition
TwoRamseyGraph_3_6_17
:=
λ x0 x1 .
x0
∈
u17
⟶
x1
∈
u17
⟶
TwoRamseyGraph_3_6_Church17
(
u17_to_Church17
x0
)
(
u17_to_Church17
x1
)
=
λ x3 x4 .
x3
Known
36aae..
:
∀ x0 .
x0
∈
u16
⟶
∀ x1 .
x1
∈
u16
⟶
TwoRamseyGraph_3_6_17
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x0
)
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x1
)
⟶
TwoRamseyGraph_3_6_17
x0
x1
Theorem
619e7..
:
∀ x0 .
x0
∈
u12
⟶
∀ x1 .
x1
∈
u12
⟶
TwoRamseyGraph_3_6_17
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x0
)
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x1
)
⟶
TwoRamseyGraph_3_6_17
x0
x1
(proof)
Known
cases_8
cases_8
:
∀ x0 .
x0
∈
8
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
6
⟶
x1
7
⟶
x1
x0
Known
In_1_8
In_1_8
:
1
∈
8
Known
In_3_8
In_3_8
:
3
∈
8
Known
In_0_8
In_0_8
:
0
∈
8
Known
In_2_8
In_2_8
:
2
∈
8
Known
In_5_8
In_5_8
:
5
∈
8
Known
In_7_8
In_7_8
:
7
∈
8
Known
In_4_8
In_4_8
:
4
∈
8
Known
In_6_8
In_6_8
:
6
∈
8
Theorem
fe49a..
:
∀ x0 .
x0
∈
u8
⟶
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x0
∈
u8
(proof)
Theorem
902b5..
:
∀ x0 .
x0
∈
u8
⟶
∀ x1 .
x1
∈
u8
⟶
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x0
=
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x1
⟶
x0
=
x1
(proof)
Theorem
6ac2d..
:
∀ x0 .
x0
∈
u8
⟶
∀ x1 .
x1
∈
u8
⟶
TwoRamseyGraph_3_6_17
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x0
)
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x1
)
⟶
TwoRamseyGraph_3_6_17
x0
x1
(proof)
Definition
Church17_p
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x1 :
(
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→ ο
.
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x2
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x3
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x4
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x5
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x6
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x7
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x8
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x9
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x10
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x11
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x12
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x13
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x14
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x15
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x16
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x17
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x18
)
⟶
x1
x0
Known
1b7f9..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x1
)
Known
9e7eb..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x3
)
Known
e70c8..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x0
)
Known
25b64..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x2
)
Known
e224e..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x5
)
Known
3b0d1..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x7
)
Known
51a81..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x4
)
Known
5d397..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x6
)
Known
4f699..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x10
)
Known
e7def..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x8
)
Known
712d3..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x11
)
Known
a8b9a..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x9
)
Known
51598..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x13
)
Known
15dad..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x14
)
Known
7e8b2..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x15
)
Known
d5e0f..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x12
)
Known
02267..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x16
)
Theorem
0504f..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x0
)
(proof)
Known
d0cff..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
u17_to_Church17
(
Church17_to_u17
x0
)
=
x0
Known
495f5..
:
∀ x0 .
x0
∈
u17
⟶
Church17_to_u17
(
u17_to_Church17
x0
)
=
x0
Known
db165..
:
∀ x0 .
x0
∈
u17
⟶
Church17_p
(
u17_to_Church17
x0
)
Theorem
01145..
:
∀ x0 .
x0
∈
u16
⟶
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x0
)
)
)
=
x0
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
setminus
setminus
:
ι
→
ι
→
ι
Known
7c829..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
u12
⟶
x1
x2
∈
u12
)
⟶
(
∀ x2 .
x2
∈
u12
⟶
∀ x3 .
x3
∈
u12
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
(
∀ x2 .
x2
∈
u12
⟶
∀ x3 .
x3
∈
u12
⟶
x0
(
x1
x2
)
(
x1
x3
)
⟶
x0
x2
x3
)
⟶
x1
u9
=
u8
⟶
x1
u10
=
u11
⟶
x1
u11
=
u9
⟶
x0
u8
u11
⟶
∀ x2 .
x2
⊆
u12
⟶
atleastp
u5
x2
⟶
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
not
(
x0
x3
x4
)
)
⟶
atleastp
u2
(
setminus
x2
u8
)
⟶
∀ x3 : ο .
(
∀ x4 .
x4
⊆
u12
⟶
atleastp
u5
x4
⟶
(
∀ x5 .
x5
∈
x4
⟶
∀ x6 .
x6
∈
x4
⟶
not
(
x0
x5
x6
)
)
⟶
u8
∈
x4
⟶
u9
∈
x4
⟶
x3
)
⟶
(
∀ x4 .
x4
⊆
u12
⟶
atleastp
u5
x4
⟶
(
∀ x5 .
x5
∈
x4
⟶
∀ x6 .
x6
∈
x4
⟶
not
(
x0
x5
x6
)
)
⟶
u8
∈
x4
⟶
u10
∈
x4
⟶
x3
)
⟶
(
∀ x4 .
x4
⊆
u12
⟶
atleastp
u5
x4
⟶
(
∀ x5 .
x5
∈
x4
⟶
∀ x6 .
x6
∈
x4
⟶
not
(
x0
x5
x6
)
)
⟶
u9
∈
x4
⟶
u10
∈
x4
⟶
x3
)
⟶
x3
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
d7087..
:
u17_to_Church17
u10
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x11
Known
a3fb1..
:
u17_to_Church17
u9
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x10
Known
4fc31..
:
u10
=
u9
⟶
∀ x0 : ο .
x0
Known
b3a20..
:
u11
=
u8
⟶
∀ x0 : ο .
x0
Known
48ba7..
:
u17_to_Church17
u8
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x9
Known
a87a3..
:
u17_to_Church17
u11
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x12
Theorem
d2e57..
:
∀ x0 .
x0
⊆
u12
⟶
atleastp
u5
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
⟶
atleastp
u2
(
setminus
x0
u8
)
⟶
∀ x1 : ο .
(
∀ x2 .
x2
⊆
u12
⟶
atleastp
u5
x2
⟶
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
TwoRamseyGraph_3_6_17
x3
x4
)
)
⟶
u8
∈
x2
⟶
u9
∈
x2
⟶
x1
)
⟶
(
∀ x2 .
x2
⊆
u12
⟶
atleastp
u5
x2
⟶
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
TwoRamseyGraph_3_6_17
x3
x4
)
)
⟶
u8
∈
x2
⟶
u10
∈
x2
⟶
x1
)
⟶
x1
(proof)
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Theorem
02751..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
prim5
x0
x2
⊆
x1
(proof)
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Known
binintersectE
binintersectE
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
and
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
binintersectI
binintersectI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
x1
⟶
x2
∈
binintersect
x0
x1
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Theorem
a08e7..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
inj
x0
x0
x2
⟶
atleastp
(
binintersect
x1
x0
)
(
binintersect
(
prim5
x1
x2
)
x0
)
(proof)
Param
nat_p
nat_p
:
ι
→
ο
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
48e0f..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
or
(
atleastp
x1
x0
)
(
atleastp
(
ordsucc
x0
)
x1
)
Known
nat_1
nat_1
:
nat_p
1
Known
d03c6..
:
∀ x0 .
atleastp
u4
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x4
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
x1
)
⟶
x1
Param
Church17_lt8
:
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Known
b4903..
:
∀ x0 x1 x2 x3 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_lt8
x0
⟶
Church17_lt8
x1
⟶
Church17_lt8
x2
⟶
Church17_lt8
x3
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 .
x13
)
=
λ x5 x6 .
x6
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 .
x13
)
=
λ x5 x6 .
x6
)
⟶
(
TwoRamseyGraph_3_6_Church17
x2
(
λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 .
x13
)
=
λ x5 x6 .
x6
)
⟶
(
TwoRamseyGraph_3_6_Church17
x3
(
λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 .
x13
)
=
λ x5 x6 .
x6
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
x1
=
λ x5 x6 .
x6
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
x2
=
λ x5 x6 .
x6
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
x3
=
λ x5 x6 .
x6
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
x2
=
λ x5 x6 .
x6
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
x3
=
λ x5 x6 .
x6
)
⟶
(
TwoRamseyGraph_3_6_Church17
x2
x3
=
λ x5 x6 .
x6
)
⟶
False
Known
67bc1..
:
∀ x0 .
x0
∈
u8
⟶
Church17_lt8
(
u17_to_Church17
x0
)
Known
d8d63..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
or
(
TwoRamseyGraph_3_6_Church17
x0
x1
=
λ x3 x4 .
x3
)
(
TwoRamseyGraph_3_6_Church17
x0
x1
=
λ x3 x4 .
x4
)
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
nat_4
nat_4
:
nat_p
4
Param
setsum
setsum
:
ι
→
ι
→
ι
Param
binunion
binunion
:
ι
→
ι
→
ι
Known
a8a92..
:
∀ x0 x1 .
x0
=
binunion
(
setminus
x0
x1
)
(
binintersect
x0
x1
)
Known
385ef..
:
∀ x0 x1 x2 x3 .
atleastp
x0
x2
⟶
atleastp
x1
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
nIn
x4
x1
)
⟶
atleastp
(
binunion
x0
x1
)
(
setsum
x2
x3
)
Known
4c104..
:
∀ x0 x1 x2 .
(
∀ x3 .
x3
∈
x0
⟶
or
(
x3
=
x1
)
(
x3
=
x2
)
)
⟶
atleastp
x0
u2
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
neq_5_4
neq_5_4
:
u5
=
u4
⟶
∀ x0 : ο .
x0
Known
22977..
:
u17_to_Church17
u5
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x6
Known
05513..
:
u17_to_Church17
u4
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x5
Known
neq_6_4
neq_6_4
:
u6
=
u4
⟶
∀ x0 : ο .
x0
Known
0e32a..
:
u17_to_Church17
u6
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x7
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
neq_7_5
neq_7_5
:
u7
=
u5
⟶
∀ x0 : ο .
x0
Known
b0f83..
:
u17_to_Church17
u7
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x8
Known
cases_4
cases_4
:
∀ x0 .
x0
∈
4
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
x0
Known
neq_1_0
neq_1_0
:
u1
=
0
⟶
∀ x0 : ο .
x0
Known
b0ce1..
:
u17_to_Church17
u1
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x2
Known
c5926..
:
u17_to_Church17
0
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x1
Known
neq_2_0
neq_2_0
:
u2
=
0
⟶
∀ x0 : ο .
x0
Known
e8ec5..
:
u17_to_Church17
u2
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x3
Known
neq_3_1
neq_3_1
:
u3
=
u1
⟶
∀ x0 : ο .
x0
Known
1ef08..
:
u17_to_Church17
u3
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x4
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
binintersectE2
binintersectE2
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
x2
∈
x1
Param
equip
equip
:
ι
→
ι
→
ο
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
5b991..
:
equip
4
(
setsum
2
2
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
In_0_4
In_0_4
:
0
∈
4
Known
In_1_4
In_1_4
:
1
∈
4
Known
In_2_4
In_2_4
:
2
∈
4
Known
In_3_4
In_3_4
:
3
∈
4
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
nat_3
nat_3
:
nat_p
3
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Param
ap
ap
:
ι
→
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Known
cases_2
cases_2
:
∀ x0 .
x0
∈
2
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
x0
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
10417..
:
∀ x0 .
x0
⊆
u12
⟶
atleastp
u5
x0
⟶
u8
∈
x0
⟶
u9
∈
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
⟶
False
Known
32ea8..
:
∀ x0 .
x0
⊆
u12
⟶
atleastp
u5
x0
⟶
u8
∈
x0
⟶
u10
∈
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
⟶
False
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
1521b..
:
add_nat
8
8
=
16
Known
4d87b..
:
∀ x0 x1 .
nat_p
x1
⟶
x0
⊆
add_nat
x0
x1
Known
nat_8
nat_8
:
nat_p
8
Theorem
9cadc..
:
∀ x0 .
x0
⊆
u12
⟶
atleastp
u5
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
(proof)
Theorem
40b07..
:
∀ x0 .
x0
⊆
u12
⟶
atleastp
u5
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
not
(
and
(
TwoRamseyGraph_3_6_17
x1
x2
)
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
)
)
(proof)
Known
ea47f..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
u16
⟶
x1
x2
∈
u16
)
⟶
(
∀ x2 .
x2
∈
u16
⟶
∀ x3 .
x3
∈
u16
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
(
∀ x2 .
x2
∈
u16
⟶
∀ x3 .
x3
∈
u16
⟶
x0
(
x1
x2
)
(
x1
x3
)
⟶
x0
x2
x3
)
⟶
(
∀ x2 .
x2
∈
u16
⟶
x1
(
x1
(
x1
(
x1
x2
)
)
)
=
x2
)
⟶
x1
u12
=
u13
⟶
x1
u13
=
u14
⟶
x1
u14
=
u15
⟶
x1
u15
=
u12
⟶
∀ x2 .
x2
⊆
u16
⟶
atleastp
u6
x2
⟶
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
not
(
x0
x3
x4
)
)
⟶
atleastp
u2
(
setminus
x2
u12
)
⟶
∀ x3 : ο .
(
∀ x4 .
x4
⊆
u16
⟶
atleastp
u6
x4
⟶
(
∀ x5 .
x5
∈
x4
⟶
∀ x6 .
x6
∈
x4
⟶
not
(
x0
x5
x6
)
)
⟶
u12
∈
x4
⟶
u13
∈
x4
⟶
x3
)
⟶
(
∀ x4 .
x4
⊆
u16
⟶
atleastp
u6
x4
⟶
(
∀ x5 .
x5
∈
x4
⟶
∀ x6 .
x6
∈
x4
⟶
not
(
x0
x5
x6
)
)
⟶
u12
∈
x4
⟶
u14
∈
x4
⟶
x3
)
⟶
x3
Known
f9dcb..
:
∀ x0 .
x0
∈
u16
⟶
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x0
∈
u16
Known
be3a6..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u12
=
u13
Known
0e84a..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u13
=
u14
Known
4b6e2..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u14
=
u15
Known
5681c..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u15
=
u12
Known
27d0c..
:
∀ x0 :
ι →
ι → ο
.
x0
0
u2
⟶
x0
u4
u6
⟶
x0
u1
u12
⟶
x0
u5
u12
⟶
x0
u8
u12
⟶
x0
u9
u12
⟶
x0
u3
u13
⟶
x0
u7
u13
⟶
x0
u10
u13
⟶
x0
u2
u14
⟶
x0
u6
u14
⟶
x0
u11
u14
⟶
x0
0
u15
⟶
x0
u4
u15
⟶
x0
0
u2
⟶
x0
u4
u6
⟶
x0
u11
u15
⟶
∀ x1 .
x1
⊆
u16
⟶
atleastp
u6
x1
⟶
u12
∈
x1
⟶
u13
∈
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
not
(
x0
x2
x3
)
)
⟶
False
Known
6b8c1..
:
∀ x0 :
ι →
ι → ο
.
x0
0
u2
⟶
x0
u4
u6
⟶
x0
u1
u12
⟶
x0
u5
u12
⟶
x0
u8
u12
⟶
x0
u9
u12
⟶
x0
u3
u13
⟶
x0
u7
u13
⟶
x0
u10
u13
⟶
x0
u2
u14
⟶
x0
u6
u14
⟶
x0
u11
u14
⟶
x0
0
u15
⟶
x0
u4
u15
⟶
x0
u3
u4
⟶
x0
0
u7
⟶
x0
u10
u14
⟶
∀ x1 .
x1
⊆
u16
⟶
atleastp
u6
x1
⟶
u12
∈
x1
⟶
u14
∈
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
not
(
x0
x2
x3
)
)
⟶
False
Known
cf897..
:
u17_to_Church17
u14
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x15
Known
f5ab5..
:
u14
=
u10
⟶
∀ x0 : ο .
x0
Known
neq_7_0
neq_7_0
:
u7
=
0
⟶
∀ x0 : ο .
x0
Known
neq_4_3
neq_4_3
:
u4
=
u3
⟶
∀ x0 : ο .
x0
Known
c424d..
:
u17_to_Church17
u15
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x16
Known
9c5db..
:
u15
=
u11
⟶
∀ x0 : ο .
x0
Known
4b742..
:
u15
=
u4
⟶
∀ x0 : ο .
x0
Known
160ad..
:
u15
=
0
⟶
∀ x0 : ο .
x0
Known
4e1aa..
:
u14
=
u11
⟶
∀ x0 : ο .
x0
Known
62d80..
:
u14
=
u6
⟶
∀ x0 : ο .
x0
Known
0bb18..
:
u14
=
u2
⟶
∀ x0 : ο .
x0
Known
0975c..
:
u17_to_Church17
u13
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x14
Known
78358..
:
u13
=
u10
⟶
∀ x0 : ο .
x0
Known
d9b35..
:
u13
=
u7
⟶
∀ x0 : ο .
x0
Known
19222..
:
u13
=
u3
⟶
∀ x0 : ο .
x0
Known
a52d8..
:
u17_to_Church17
u12
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x13
Known
22885..
:
u12
=
u9
⟶
∀ x0 : ο .
x0
Known
a6a6c..
:
u12
=
u8
⟶
∀ x0 : ο .
x0
Known
07eba..
:
u12
=
u5
⟶
∀ x0 : ο .
x0
Known
ce0cd..
:
u12
=
u1
⟶
∀ x0 : ο .
x0
Known
a62ab..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 .
x1
⊆
u12
⟶
atleastp
u5
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
⊆
u16
⟶
atleastp
u6
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
not
(
x0
x2
x3
)
)
⟶
atleastp
u2
(
setminus
x1
u12
)
Theorem
30d6b..
:
∀ x0 .
x0
⊆
u16
⟶
atleastp
u6
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
(proof)
Known
32519..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
(
x0
u12
=
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x14
)
⟶
(
x0
u13
=
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x15
)
⟶
(
x0
u14
=
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x16
)
⟶
(
x0
u15
=
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x17
)
⟶
(
x0
u16
=
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x18
)
⟶
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
u17
⟶
∀ x3 .
x3
∈
u17
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
(
x0
x2
)
(
x0
x3
)
=
λ x5 x6 .
x5
)
⟶
x1
x2
x3
)
⟶
(
∀ x2 .
x2
⊆
u12
⟶
atleastp
u5
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
)
)
⟶
(
∀ x2 .
x2
⊆
u16
⟶
atleastp
u6
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
)
)
⟶
∀ x2 .
x2
⊆
u17
⟶
atleastp
u6
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
)
Known
480e6..
:
u17_to_Church17
u16
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x17
Theorem
5922f..
:
∀ x0 .
x0
⊆
u17
⟶
atleastp
u6
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
(proof)
Param
TwoRamseyProp_atleastp
:
ι
→
ι
→
ι
→
ο
Known
68ea7..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u17
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u17
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
not
(
TwoRamseyProp_atleastp
3
6
17
)
Known
72dc0..
:
∀ x0 x1 .
TwoRamseyGraph_3_6_17
x0
x1
⟶
TwoRamseyGraph_3_6_17
x1
x0
Known
d6d79..
:
∀ x0 .
x0
⊆
u17
⟶
atleastp
u3
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
TwoRamseyGraph_3_6_17
x1
x2
)
Theorem
not_TwoRamseyProp_atleast_3_6_17
:
not
(
TwoRamseyProp_atleastp
3
6
17
)
(proof)
Param
TwoRamseyProp
TwoRamseyProp
:
ι
→
ι
→
ι
→
ο
Known
9e653..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u17
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u17
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
not
(
TwoRamseyProp
3
6
17
)
Theorem
not_TwoRamseyProp_3_6_17
not_TwoRamseyProp_3_6_17
:
not
(
TwoRamseyProp
3
6
17
)
(proof)
previous assets