Search for blocks/addresses/...
Proofgold Address
address
PUgzAs4LgBNMJWAcHLM97C8DqU33iMDoMdj
total
0
mg
-
conjpub
-
current assets
50d03..
/
4e3ee..
bday:
28464
doc published by
PrQUS..
Param
CSNo
CSNo
:
ι
→
ο
Param
nIn
nIn
:
ι
→
ι
→
ο
Param
Sing
Sing
:
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
nat_p
nat_p
:
ι
→
ο
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
ordinal
ordinal
:
ι
→
ο
Param
and
and
:
ο
→
ο
→
ο
Definition
ExtendedSNoElt_
ExtendedSNoElt_
:=
λ x0 x1 .
∀ x2 .
x2
∈
prim3
x1
⟶
or
(
ordinal
x2
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
=
Sing
x4
)
⟶
x3
)
⟶
x3
)
Known
Sing_nat_fresh_extension
Sing_nat_fresh_extension
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 .
ExtendedSNoElt_
x0
x1
⟶
∀ x2 .
x2
∈
x1
⟶
nIn
(
Sing
x0
)
x2
Known
nat_3
nat_3
:
nat_p
3
Known
In_1_3
In_1_3
:
1
∈
3
Known
CSNo_ExtendedSNoElt_3
CSNo_ExtendedSNoElt_3
:
∀ x0 .
CSNo
x0
⟶
ExtendedSNoElt_
3
x0
Theorem
quaternion_tag_fresh
quaternion_tag_fresh
:
∀ x0 .
CSNo
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nIn
(
Sing
3
)
x1
(proof)
Param
binunion
binunion
:
ι
→
ι
→
ι
Definition
SetAdjoin
SetAdjoin
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Definition
pair_tag
pair_tag
:=
λ x0 x1 x2 .
binunion
x1
{
SetAdjoin
x3
x0
|x3 ∈
x2
}
Definition
CSNo_pair
CSNo_pair
:=
pair_tag
(
Sing
3
)
Known
pair_tag_0
pair_tag_0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
pair_tag
x0
x2
0
=
x2
Theorem
CSNo_pair_0
CSNo_pair_0
:
∀ x0 .
CSNo_pair
x0
0
=
x0
(proof)
Known
pair_tag_prop_1
pair_tag_prop_1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 x4 x5 .
x1
x2
⟶
x1
x4
⟶
pair_tag
x0
x2
x3
=
pair_tag
x0
x4
x5
⟶
x2
=
x4
Theorem
CSNo_pair_prop_1
CSNo_pair_prop_1
:
∀ x0 x1 x2 x3 .
CSNo
x0
⟶
CSNo
x2
⟶
CSNo_pair
x0
x1
=
CSNo_pair
x2
x3
⟶
x0
=
x2
(proof)
Known
pair_tag_prop_2
pair_tag_prop_2
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 x4 x5 .
x1
x2
⟶
x1
x3
⟶
x1
x4
⟶
x1
x5
⟶
pair_tag
x0
x2
x3
=
pair_tag
x0
x4
x5
⟶
x3
=
x5
Theorem
CSNo_pair_prop_2
CSNo_pair_prop_2
:
∀ x0 x1 x2 x3 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
CSNo_pair
x0
x1
=
CSNo_pair
x2
x3
⟶
x1
=
x3
(proof)
Param
CD_carr
CD_carr
:
ι
→
(
ι
→
ο
) →
ι
→
ο
Definition
HSNo
HSNo
:=
CD_carr
(
Sing
3
)
CSNo
Known
CD_carr_I
CD_carr_I
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
CD_carr
x0
x1
(
pair_tag
x0
x2
x3
)
Theorem
HSNo_I
HSNo_I
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
HSNo
(
CSNo_pair
x0
x1
)
(proof)
Known
CD_carr_E
CD_carr_E
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
∀ x3 :
ι → ο
.
(
∀ x4 x5 .
x1
x4
⟶
x1
x5
⟶
x2
=
pair_tag
x0
x4
x5
⟶
x3
(
pair_tag
x0
x4
x5
)
)
⟶
x3
x2
Theorem
HSNo_E
HSNo_E
:
∀ x0 .
HSNo
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 x3 .
CSNo
x2
⟶
CSNo
x3
⟶
x0
=
CSNo_pair
x2
x3
⟶
x1
(
CSNo_pair
x2
x3
)
)
⟶
x1
x0
(proof)
Known
CD_carr_0ext
CD_carr_0ext
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
x1
0
⟶
∀ x2 .
x1
x2
⟶
CD_carr
x0
x1
x2
Known
CSNo_0
CSNo_0
:
CSNo
0
Theorem
CSNo_HSNo
CSNo_HSNo
:
∀ x0 .
CSNo
x0
⟶
HSNo
x0
(proof)
Theorem
HSNo_0
HSNo_0
:
HSNo
0
(proof)
Known
CSNo_1
CSNo_1
:
CSNo
1
Theorem
HSNo_1
HSNo_1
:
HSNo
1
(proof)
Known
UnionE_impred
UnionE_impred
:
∀ x0 x1 .
x1
∈
prim3
x0
⟶
∀ x2 : ο .
(
∀ x3 .
x1
∈
x3
⟶
x3
∈
x0
⟶
x2
)
⟶
x2
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Param
Subq
Subq
:
ι
→
ι
→
ο
Known
extension_SNoElt_mon
extension_SNoElt_mon
:
∀ x0 x1 .
x0
⊆
x1
⟶
∀ x2 .
ExtendedSNoElt_
x0
x2
⟶
ExtendedSNoElt_
x1
x2
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
UnionI
UnionI
:
∀ x0 x1 x2 .
x1
∈
x2
⟶
x2
∈
x0
⟶
x1
∈
prim3
x0
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
In_3_4
In_3_4
:
3
∈
4
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Theorem
HSNo_ExtendedSNoElt_4
HSNo_ExtendedSNoElt_4
:
∀ x0 .
HSNo
x0
⟶
ExtendedSNoElt_
4
x0
(proof)
Definition
Quaternion_j
Quaternion_j
:=
CSNo_pair
0
1
Param
Complex_i
Complex_i
:
ι
Definition
Quaternion_k
Quaternion_k
:=
CSNo_pair
0
Complex_i
Param
CD_proj0
CD_proj0
:
ι
→
(
ι
→
ο
) →
ι
→
ι
Definition
HSNo_proj0
HSNo_proj0
:=
CD_proj0
(
Sing
3
)
CSNo
Param
CD_proj1
CD_proj1
:
ι
→
(
ι
→
ο
) →
ι
→
ι
Definition
HSNo_proj1
HSNo_proj1
:=
CD_proj1
(
Sing
3
)
CSNo
Known
CD_proj0_1
CD_proj0_1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
and
(
x1
(
CD_proj0
x0
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x1
x4
)
(
x2
=
pair_tag
x0
(
CD_proj0
x0
x1
x2
)
x4
)
⟶
x3
)
⟶
x3
)
Theorem
HSNo_proj0_1
HSNo_proj0_1
:
∀ x0 .
HSNo
x0
⟶
and
(
CSNo
(
HSNo_proj0
x0
)
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
CSNo
x2
)
(
x0
=
CSNo_pair
(
HSNo_proj0
x0
)
x2
)
⟶
x1
)
⟶
x1
)
(proof)
Known
CD_proj0_2
CD_proj0_2
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
CD_proj0
x0
x1
(
pair_tag
x0
x2
x3
)
=
x2
Theorem
HSNo_proj0_2
HSNo_proj0_2
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
HSNo_proj0
(
CSNo_pair
x0
x1
)
=
x0
(proof)
Known
CD_proj1_1
CD_proj1_1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
and
(
x1
(
CD_proj1
x0
x1
x2
)
)
(
x2
=
pair_tag
x0
(
CD_proj0
x0
x1
x2
)
(
CD_proj1
x0
x1
x2
)
)
Theorem
HSNo_proj1_1
HSNo_proj1_1
:
∀ x0 .
HSNo
x0
⟶
and
(
CSNo
(
HSNo_proj1
x0
)
)
(
x0
=
CSNo_pair
(
HSNo_proj0
x0
)
(
HSNo_proj1
x0
)
)
(proof)
Known
CD_proj1_2
CD_proj1_2
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
CD_proj1
x0
x1
(
pair_tag
x0
x2
x3
)
=
x3
Theorem
HSNo_proj1_2
HSNo_proj1_2
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
HSNo_proj1
(
CSNo_pair
x0
x1
)
=
x1
(proof)
Known
CD_proj0R
CD_proj0R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
x1
(
CD_proj0
x0
x1
x2
)
Theorem
HSNo_proj0R
HSNo_proj0R
:
∀ x0 .
HSNo
x0
⟶
CSNo
(
HSNo_proj0
x0
)
(proof)
Known
CD_proj1R
CD_proj1R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
x1
(
CD_proj1
x0
x1
x2
)
Theorem
HSNo_proj1R
HSNo_proj1R
:
∀ x0 .
HSNo
x0
⟶
CSNo
(
HSNo_proj1
x0
)
(proof)
Known
CD_proj0proj1_eta
CD_proj0proj1_eta
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 .
CD_carr
x0
x1
x2
⟶
x2
=
pair_tag
x0
(
CD_proj0
x0
x1
x2
)
(
CD_proj1
x0
x1
x2
)
Theorem
HSNo_proj0p1
HSNo_proj0p1
:
∀ x0 .
HSNo
x0
⟶
x0
=
CSNo_pair
(
HSNo_proj0
x0
)
(
HSNo_proj1
x0
)
(proof)
Known
CD_proj0proj1_split
CD_proj0proj1_split
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 .
CD_carr
x0
x1
x2
⟶
CD_carr
x0
x1
x3
⟶
CD_proj0
x0
x1
x2
=
CD_proj0
x0
x1
x3
⟶
CD_proj1
x0
x1
x2
=
CD_proj1
x0
x1
x3
⟶
x2
=
x3
Theorem
HSNo_proj0proj1_split
HSNo_proj0proj1_split
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo_proj0
x0
=
HSNo_proj0
x1
⟶
HSNo_proj1
x0
=
HSNo_proj1
x1
⟶
x0
=
x1
(proof)
Param
CSNoLev
CSNoLev
:
ι
→
ι
Definition
HSNoLev
HSNoLev
:=
λ x0 .
binunion
(
CSNoLev
(
HSNo_proj0
x0
)
)
(
CSNoLev
(
HSNo_proj1
x0
)
)
Known
ordinal_binunion
ordinal_binunion
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
(
binunion
x0
x1
)
Known
CSNoLev_ordinal
CSNoLev_ordinal
:
∀ x0 .
CSNo
x0
⟶
ordinal
(
CSNoLev
x0
)
Theorem
HSNoLev_ordinal
HSNoLev_ordinal
:
∀ x0 .
HSNo
x0
⟶
ordinal
(
HSNoLev
x0
)
(proof)
Param
CD_minus
CD_minus
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
ι
→
ι
Param
minus_CSNo
minus_CSNo
:
ι
→
ι
Definition
minus_HSNo
minus_HSNo
:=
CD_minus
(
Sing
3
)
CSNo
minus_CSNo
Param
CD_conj
CD_conj
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Param
conj_CSNo
conj_CSNo
:
ι
→
ι
Definition
conj_HSNo
conj_HSNo
:=
CD_conj
(
Sing
3
)
CSNo
minus_CSNo
conj_CSNo
Param
CD_add
CD_add
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
Param
add_CSNo
add_CSNo
:
ι
→
ι
→
ι
Definition
add_HSNo
add_HSNo
:=
CD_add
(
Sing
3
)
CSNo
add_CSNo
Param
CD_mul
CD_mul
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
Param
mul_CSNo
mul_CSNo
:
ι
→
ι
→
ι
Definition
mul_HSNo
mul_HSNo
:=
CD_mul
(
Sing
3
)
CSNo
minus_CSNo
conj_CSNo
add_CSNo
mul_CSNo
Param
CD_exp_nat
CD_exp_nat
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
Definition
exp_HSNo_nat
exp_HSNo_nat
:=
CD_exp_nat
(
Sing
3
)
CSNo
minus_CSNo
conj_CSNo
add_CSNo
mul_CSNo
Known
CSNo_Complex_i
CSNo_Complex_i
:
CSNo
Complex_i
Theorem
HSNo_Complex_i
HSNo_Complex_i
:
HSNo
Complex_i
(proof)
Theorem
HSNo_Quaternion_j
HSNo_Quaternion_j
:
HSNo
Quaternion_j
(proof)
Theorem
HSNo_Quaternion_k
HSNo_Quaternion_k
:
HSNo
Quaternion_k
(proof)
Known
CD_minus_CD
CD_minus_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
(
CD_minus
x0
x1
x2
x3
)
Known
CSNo_minus_CSNo
CSNo_minus_CSNo
:
∀ x0 .
CSNo
x0
⟶
CSNo
(
minus_CSNo
x0
)
Theorem
HSNo_minus_HSNo
HSNo_minus_HSNo
:
∀ x0 .
HSNo
x0
⟶
HSNo
(
minus_HSNo
x0
)
(proof)
Known
CD_minus_proj0
CD_minus_proj0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_proj0
x0
x1
(
CD_minus
x0
x1
x2
x3
)
=
x2
(
CD_proj0
x0
x1
x3
)
Theorem
minus_HSNo_proj0
minus_HSNo_proj0
:
∀ x0 .
HSNo
x0
⟶
HSNo_proj0
(
minus_HSNo
x0
)
=
minus_CSNo
(
HSNo_proj0
x0
)
(proof)
Known
CD_minus_proj1
CD_minus_proj1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_proj1
x0
x1
(
CD_minus
x0
x1
x2
x3
)
=
x2
(
CD_proj1
x0
x1
x3
)
Theorem
minus_HSNo_proj1
minus_HSNo_proj1
:
∀ x0 .
HSNo
x0
⟶
HSNo_proj1
(
minus_HSNo
x0
)
=
minus_CSNo
(
HSNo_proj1
x0
)
(proof)
Known
CD_conj_CD
CD_conj_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_carr
x0
x1
(
CD_conj
x0
x1
x2
x3
x4
)
Known
CSNo_conj_CSNo
CSNo_conj_CSNo
:
∀ x0 .
CSNo
x0
⟶
CSNo
(
conj_CSNo
x0
)
Theorem
HSNo_conj_HSNo
HSNo_conj_HSNo
:
∀ x0 .
HSNo
x0
⟶
HSNo
(
conj_HSNo
x0
)
(proof)
Known
CD_conj_proj0
CD_conj_proj0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_proj0
x0
x1
(
CD_conj
x0
x1
x2
x3
x4
)
=
x3
(
CD_proj0
x0
x1
x4
)
Theorem
conj_HSNo_proj0
conj_HSNo_proj0
:
∀ x0 .
HSNo
x0
⟶
HSNo_proj0
(
conj_HSNo
x0
)
=
conj_CSNo
(
HSNo_proj0
x0
)
(proof)
Known
CD_conj_proj1
CD_conj_proj1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_proj1
x0
x1
(
CD_conj
x0
x1
x2
x3
x4
)
=
x2
(
CD_proj1
x0
x1
x4
)
Theorem
conj_HSNo_proj1
conj_HSNo_proj1
:
∀ x0 .
HSNo
x0
⟶
HSNo_proj1
(
conj_HSNo
x0
)
=
minus_CSNo
(
HSNo_proj1
x0
)
(proof)
Known
CD_add_CD
CD_add_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x1
(
x2
x3
x4
)
)
⟶
∀ x3 x4 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_carr
x0
x1
(
CD_add
x0
x1
x2
x3
x4
)
Known
CSNo_add_CSNo
CSNo_add_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
(
add_CSNo
x0
x1
)
Theorem
HSNo_add_HSNo
HSNo_add_HSNo
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo
(
add_HSNo
x0
x1
)
(proof)
Known
CD_add_proj0
CD_add_proj0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x1
(
x2
x3
x4
)
)
⟶
∀ x3 x4 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_proj0
x0
x1
(
CD_add
x0
x1
x2
x3
x4
)
=
x2
(
CD_proj0
x0
x1
x3
)
(
CD_proj0
x0
x1
x4
)
Theorem
add_HSNo_proj0
add_HSNo_proj0
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo_proj0
(
add_HSNo
x0
x1
)
=
add_CSNo
(
HSNo_proj0
x0
)
(
HSNo_proj0
x1
)
(proof)
Known
CD_add_proj1
CD_add_proj1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x1
(
x2
x3
x4
)
)
⟶
∀ x3 x4 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_proj1
x0
x1
(
CD_add
x0
x1
x2
x3
x4
)
=
x2
(
CD_proj1
x0
x1
x3
)
(
CD_proj1
x0
x1
x4
)
Theorem
add_HSNo_proj1
add_HSNo_proj1
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo_proj1
(
add_HSNo
x0
x1
)
=
add_CSNo
(
HSNo_proj1
x0
)
(
HSNo_proj1
x1
)
(proof)
Known
CD_mul_CD
CD_mul_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_carr
x0
x1
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
Known
CSNo_mul_CSNo
CSNo_mul_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
(
mul_CSNo
x0
x1
)
Theorem
HSNo_mul_HSNo
HSNo_mul_HSNo
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo
(
mul_HSNo
x0
x1
)
(proof)
Known
CD_mul_proj0
CD_mul_proj0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_proj0
x0
x1
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x4
(
x5
(
CD_proj0
x0
x1
x6
)
(
CD_proj0
x0
x1
x7
)
)
(
x2
(
x5
(
x3
(
CD_proj1
x0
x1
x7
)
)
(
CD_proj1
x0
x1
x6
)
)
)
Theorem
mul_HSNo_proj0
mul_HSNo_proj0
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo_proj0
(
mul_HSNo
x0
x1
)
=
add_CSNo
(
mul_CSNo
(
HSNo_proj0
x0
)
(
HSNo_proj0
x1
)
)
(
minus_CSNo
(
mul_CSNo
(
conj_CSNo
(
HSNo_proj1
x1
)
)
(
HSNo_proj1
x0
)
)
)
(proof)
Known
CD_mul_proj1
CD_mul_proj1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_proj1
x0
x1
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x4
(
x5
(
CD_proj1
x0
x1
x7
)
(
CD_proj0
x0
x1
x6
)
)
(
x5
(
CD_proj1
x0
x1
x6
)
(
x3
(
CD_proj0
x0
x1
x7
)
)
)
Theorem
mul_HSNo_proj1
mul_HSNo_proj1
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo_proj1
(
mul_HSNo
x0
x1
)
=
add_CSNo
(
mul_CSNo
(
HSNo_proj1
x1
)
(
HSNo_proj0
x0
)
)
(
mul_CSNo
(
HSNo_proj1
x0
)
(
conj_CSNo
(
HSNo_proj0
x1
)
)
)
(proof)
Known
CD_proj0_F
CD_proj0_F
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
x1
0
⟶
∀ x2 .
x1
x2
⟶
CD_proj0
x0
x1
x2
=
x2
Theorem
CSNo_HSNo_proj0
CSNo_HSNo_proj0
:
∀ x0 .
CSNo
x0
⟶
HSNo_proj0
x0
=
x0
(proof)
Known
CD_proj1_F
CD_proj1_F
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
x1
0
⟶
∀ x2 .
x1
x2
⟶
CD_proj1
x0
x1
x2
=
0
Theorem
CSNo_HSNo_proj1
CSNo_HSNo_proj1
:
∀ x0 .
CSNo
x0
⟶
HSNo_proj1
x0
=
0
(proof)
Theorem
HSNo_p0_0
HSNo_p0_0
:
HSNo_proj0
0
=
0
(proof)
Theorem
HSNo_p1_0
HSNo_p1_0
:
HSNo_proj1
0
=
0
(proof)
Theorem
HSNo_p0_1
HSNo_p0_1
:
HSNo_proj0
1
=
1
(proof)
Theorem
HSNo_p1_1
HSNo_p1_1
:
HSNo_proj1
1
=
0
(proof)
Theorem
HSNo_p0_i
HSNo_p0_i
:
HSNo_proj0
Complex_i
=
Complex_i
(proof)
Theorem
HSNo_p1_i
HSNo_p1_i
:
HSNo_proj1
Complex_i
=
0
(proof)
Theorem
HSNo_p0_j
HSNo_p0_j
:
HSNo_proj0
Quaternion_j
=
0
(proof)
Theorem
HSNo_p1_j
HSNo_p1_j
:
HSNo_proj1
Quaternion_j
=
1
(proof)
Theorem
HSNo_p0_k
HSNo_p0_k
:
HSNo_proj0
Quaternion_k
=
0
(proof)
Theorem
HSNo_p1_k
HSNo_p1_k
:
HSNo_proj1
Quaternion_k
=
Complex_i
(proof)
Known
CD_minus_F_eq
CD_minus_F_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
x1
0
⟶
x2
0
=
0
⟶
∀ x3 .
x1
x3
⟶
CD_minus
x0
x1
x2
x3
=
x2
x3
Known
minus_CSNo_0
minus_CSNo_0
:
minus_CSNo
0
=
0
Theorem
minus_HSNo_minus_CSNo
minus_HSNo_minus_CSNo
:
∀ x0 .
CSNo
x0
⟶
minus_HSNo
x0
=
minus_CSNo
x0
(proof)
Theorem
minus_HSNo_0
minus_HSNo_0
:
minus_HSNo
0
=
0
(proof)
Known
CD_conj_F_eq
CD_conj_F_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
x1
0
⟶
x2
0
=
0
⟶
∀ x3 :
ι → ι
.
∀ x4 .
x1
x4
⟶
CD_conj
x0
x1
x2
x3
x4
=
x3
x4
Theorem
conj_HSNo_conj_CSNo
conj_HSNo_conj_CSNo
:
∀ x0 .
CSNo
x0
⟶
conj_HSNo
x0
=
conj_CSNo
x0
(proof)
Param
SNo
SNo
:
ι
→
ο
Known
SNo_CSNo
SNo_CSNo
:
∀ x0 .
SNo
x0
⟶
CSNo
x0
Known
conj_CSNo_id_SNo
conj_CSNo_id_SNo
:
∀ x0 .
SNo
x0
⟶
conj_CSNo
x0
=
x0
Theorem
conj_HSNo_id_SNo
conj_HSNo_id_SNo
:
∀ x0 .
SNo
x0
⟶
conj_HSNo
x0
=
x0
(proof)
Known
conj_CSNo_0
conj_CSNo_0
:
conj_CSNo
0
=
0
Theorem
conj_HSNo_0
conj_HSNo_0
:
conj_HSNo
0
=
0
(proof)
Known
conj_CSNo_1
conj_CSNo_1
:
conj_CSNo
1
=
1
Theorem
conj_HSNo_1
conj_HSNo_1
:
conj_HSNo
1
=
1
(proof)
Known
CD_add_F_eq
CD_add_F_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
x1
0
⟶
x2
0
0
=
0
⟶
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
CD_add
x0
x1
x2
x3
x4
=
x2
x3
x4
Known
add_CSNo_0L
add_CSNo_0L
:
∀ x0 .
CSNo
x0
⟶
add_CSNo
0
x0
=
x0
Theorem
add_HSNo_add_CSNo
add_HSNo_add_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
add_HSNo
x0
x1
=
add_CSNo
x0
x1
(proof)
Known
CD_mul_F_eq
CD_mul_F_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
x2
0
=
0
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
0
=
0
)
⟶
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
=
x5
x6
x7
Known
add_CSNo_0R
add_CSNo_0R
:
∀ x0 .
CSNo
x0
⟶
add_CSNo
x0
0
=
x0
Known
mul_CSNo_0L
mul_CSNo_0L
:
∀ x0 .
CSNo
x0
⟶
mul_CSNo
0
x0
=
0
Known
mul_CSNo_0R
mul_CSNo_0R
:
∀ x0 .
CSNo
x0
⟶
mul_CSNo
x0
0
=
0
Theorem
mul_HSNo_mul_CSNo
mul_HSNo_mul_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
mul_HSNo
x0
x1
=
mul_CSNo
x0
x1
(proof)
Known
CD_minus_invol
CD_minus_invol
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x2
x3
)
)
⟶
(
∀ x3 .
x1
x3
⟶
x2
(
x2
x3
)
=
x3
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_minus
x0
x1
x2
(
CD_minus
x0
x1
x2
x3
)
=
x3
Known
minus_CSNo_invol
minus_CSNo_invol
:
∀ x0 .
CSNo
x0
⟶
minus_CSNo
(
minus_CSNo
x0
)
=
x0
Theorem
minus_HSNo_invol
minus_HSNo_invol
:
∀ x0 .
HSNo
x0
⟶
minus_HSNo
(
minus_HSNo
x0
)
=
x0
(proof)
Known
CD_conj_invol
CD_conj_invol
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x2
(
x2
x4
)
=
x4
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
(
x3
x4
)
=
x4
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_conj
x0
x1
x2
x3
(
CD_conj
x0
x1
x2
x3
x4
)
=
x4
Known
conj_CSNo_invol
conj_CSNo_invol
:
∀ x0 .
CSNo
x0
⟶
conj_CSNo
(
conj_CSNo
x0
)
=
x0
Theorem
conj_HSNo_invol
conj_HSNo_invol
:
∀ x0 .
HSNo
x0
⟶
conj_HSNo
(
conj_HSNo
x0
)
=
x0
(proof)
Known
CD_conj_minus
CD_conj_minus
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x1
(
x3
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
(
x2
x4
)
=
x2
(
x3
x4
)
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_conj
x0
x1
x2
x3
(
CD_minus
x0
x1
x2
x4
)
=
CD_minus
x0
x1
x2
(
CD_conj
x0
x1
x2
x3
x4
)
Known
conj_minus_CSNo
conj_minus_CSNo
:
∀ x0 .
CSNo
x0
⟶
conj_CSNo
(
minus_CSNo
x0
)
=
minus_CSNo
(
conj_CSNo
x0
)
Theorem
conj_minus_HSNo
conj_minus_HSNo
:
∀ x0 .
HSNo
x0
⟶
conj_HSNo
(
minus_HSNo
x0
)
=
minus_HSNo
(
conj_HSNo
x0
)
(proof)
Known
CD_minus_add
CD_minus_add
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 x5 .
x1
x4
⟶
x1
x5
⟶
x1
(
x3
x4
x5
)
)
⟶
(
∀ x4 x5 .
x1
x4
⟶
x1
x5
⟶
x2
(
x3
x4
x5
)
=
x3
(
x2
x4
)
(
x2
x5
)
)
⟶
∀ x4 x5 .
CD_carr
x0
x1
x4
⟶
CD_carr
x0
x1
x5
⟶
CD_minus
x0
x1
x2
(
CD_add
x0
x1
x3
x4
x5
)
=
CD_add
x0
x1
x3
(
CD_minus
x0
x1
x2
x4
)
(
CD_minus
x0
x1
x2
x5
)
Known
minus_add_CSNo
minus_add_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
minus_CSNo
(
add_CSNo
x0
x1
)
=
add_CSNo
(
minus_CSNo
x0
)
(
minus_CSNo
x1
)
Theorem
minus_add_HSNo
minus_add_HSNo
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
minus_HSNo
(
add_HSNo
x0
x1
)
=
add_HSNo
(
minus_HSNo
x0
)
(
minus_HSNo
x1
)
(proof)
Known
CD_conj_add
CD_conj_add
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x1
x5
⟶
x1
(
x2
x5
)
)
⟶
(
∀ x5 .
x1
x5
⟶
x1
(
x3
x5
)
)
⟶
(
∀ x5 x6 .
x1
x5
⟶
x1
x6
⟶
x1
(
x4
x5
x6
)
)
⟶
(
∀ x5 x6 .
x1
x5
⟶
x1
x6
⟶
x2
(
x4
x5
x6
)
=
x4
(
x2
x5
)
(
x2
x6
)
)
⟶
(
∀ x5 x6 .
x1
x5
⟶
x1
x6
⟶
x3
(
x4
x5
x6
)
=
x4
(
x3
x5
)
(
x3
x6
)
)
⟶
∀ x5 x6 .
CD_carr
x0
x1
x5
⟶
CD_carr
x0
x1
x6
⟶
CD_conj
x0
x1
x2
x3
(
CD_add
x0
x1
x4
x5
x6
)
=
CD_add
x0
x1
x4
(
CD_conj
x0
x1
x2
x3
x5
)
(
CD_conj
x0
x1
x2
x3
x6
)
Known
conj_add_CSNo
conj_add_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
conj_CSNo
(
add_CSNo
x0
x1
)
=
add_CSNo
(
conj_CSNo
x0
)
(
conj_CSNo
x1
)
Theorem
conj_add_HSNo
conj_add_HSNo
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
conj_HSNo
(
add_HSNo
x0
x1
)
=
add_HSNo
(
conj_HSNo
x0
)
(
conj_HSNo
x1
)
(proof)
Known
CD_add_com
CD_add_com
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x2
x3
x4
=
x2
x4
x3
)
⟶
∀ x3 x4 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_add
x0
x1
x2
x3
x4
=
CD_add
x0
x1
x2
x4
x3
Known
add_CSNo_com
add_CSNo_com
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
add_CSNo
x0
x1
=
add_CSNo
x1
x0
Theorem
add_HSNo_com
add_HSNo_com
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
add_HSNo
x0
x1
=
add_HSNo
x1
x0
(proof)
Known
CD_add_assoc
CD_add_assoc
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x1
x3
⟶
x1
x4
⟶
x1
(
x2
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x1
x3
⟶
x1
x4
⟶
x1
x5
⟶
x2
(
x2
x3
x4
)
x5
=
x2
x3
(
x2
x4
x5
)
)
⟶
∀ x3 x4 x5 .
CD_carr
x0
x1
x3
⟶
CD_carr
x0
x1
x4
⟶
CD_carr
x0
x1
x5
⟶
CD_add
x0
x1
x2
(
CD_add
x0
x1
x2
x3
x4
)
x5
=
CD_add
x0
x1
x2
x3
(
CD_add
x0
x1
x2
x4
x5
)
Known
add_CSNo_assoc
add_CSNo_assoc
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
add_CSNo
(
add_CSNo
x0
x1
)
x2
=
add_CSNo
x0
(
add_CSNo
x1
x2
)
Theorem
add_HSNo_assoc
add_HSNo_assoc
:
∀ x0 x1 x2 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo
x2
⟶
add_HSNo
(
add_HSNo
x0
x1
)
x2
=
add_HSNo
x0
(
add_HSNo
x1
x2
)
(proof)
Known
CD_add_0L
CD_add_0L
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
x1
0
⟶
(
∀ x3 .
x1
x3
⟶
x2
0
x3
=
x3
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_add
x0
x1
x2
0
x3
=
x3
Theorem
add_HSNo_0L
add_HSNo_0L
:
∀ x0 .
HSNo
x0
⟶
add_HSNo
0
x0
=
x0
(proof)
Known
CD_add_0R
CD_add_0R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι →
ι → ι
.
x1
0
⟶
(
∀ x3 .
x1
x3
⟶
x2
x3
0
=
x3
)
⟶
∀ x3 .
CD_carr
x0
x1
x3
⟶
CD_add
x0
x1
x2
x3
0
=
x3
Theorem
add_HSNo_0R
add_HSNo_0R
:
∀ x0 .
HSNo
x0
⟶
add_HSNo
x0
0
=
x0
(proof)
Known
CD_add_minus_linv
CD_add_minus_linv
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
(
x2
x4
)
x4
=
0
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_add
x0
x1
x3
(
CD_minus
x0
x1
x2
x4
)
x4
=
0
Known
add_CSNo_minus_CSNo_linv
add_CSNo_minus_CSNo_linv
:
∀ x0 .
CSNo
x0
⟶
add_CSNo
(
minus_CSNo
x0
)
x0
=
0
Theorem
add_HSNo_minus_HSNo_linv
add_HSNo_minus_HSNo_linv
:
∀ x0 .
HSNo
x0
⟶
add_HSNo
(
minus_HSNo
x0
)
x0
=
0
(proof)
Known
CD_add_minus_rinv
CD_add_minus_rinv
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x1
x4
⟶
x1
(
x2
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
x4
(
x2
x4
)
=
0
)
⟶
∀ x4 .
CD_carr
x0
x1
x4
⟶
CD_add
x0
x1
x3
x4
(
CD_minus
x0
x1
x2
x4
)
=
0
Known
add_CSNo_minus_CSNo_rinv
add_CSNo_minus_CSNo_rinv
:
∀ x0 .
CSNo
x0
⟶
add_CSNo
x0
(
minus_CSNo
x0
)
=
0
Theorem
add_HSNo_minus_HSNo_rinv
add_HSNo_minus_HSNo_rinv
:
∀ x0 .
HSNo
x0
⟶
add_HSNo
x0
(
minus_HSNo
x0
)
=
0
(proof)
Known
CD_mul_0R
CD_mul_0R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x2
0
=
0
⟶
x3
0
=
0
⟶
x4
0
0
=
0
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
0
=
0
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
0
=
0
Theorem
mul_HSNo_0R
mul_HSNo_0R
:
∀ x0 .
HSNo
x0
⟶
mul_HSNo
x0
0
=
0
(proof)
Known
CD_mul_0L
CD_mul_0L
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
x2
0
=
0
⟶
x4
0
0
=
0
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
0
=
0
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_mul
x0
x1
x2
x3
x4
x5
0
x6
=
0
Theorem
mul_HSNo_0L
mul_HSNo_0L
:
∀ x0 .
HSNo
x0
⟶
mul_HSNo
0
x0
=
0
(proof)
Known
CD_mul_1R
CD_mul_1R
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x1
1
⟶
x2
0
=
0
⟶
x3
0
=
0
⟶
x3
1
=
1
⟶
(
∀ x6 .
x1
x6
⟶
x4
0
x6
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
1
=
x6
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
1
=
x6
Known
mul_CSNo_1R
mul_CSNo_1R
:
∀ x0 .
CSNo
x0
⟶
mul_CSNo
x0
1
=
x0
Theorem
mul_HSNo_1R
mul_HSNo_1R
:
∀ x0 .
HSNo
x0
⟶
mul_HSNo
x0
1
=
x0
(proof)
Known
CD_mul_1L
CD_mul_1L
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x1
1
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
x2
0
=
0
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
0
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
1
x6
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
1
=
x6
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_mul
x0
x1
x2
x3
x4
x5
1
x6
=
x6
Known
mul_CSNo_1L
mul_CSNo_1L
:
∀ x0 .
CSNo
x0
⟶
mul_CSNo
1
x0
=
x0
Theorem
mul_HSNo_1L
mul_HSNo_1L
:
∀ x0 .
HSNo
x0
⟶
mul_HSNo
1
x0
=
x0
(proof)
Known
CD_conj_mul
CD_conj_mul
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x2
(
x2
x6
)
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x3
(
x3
x6
)
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x3
(
x2
x6
)
=
x2
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x3
(
x4
x6
x7
)
=
x4
(
x3
x6
)
(
x3
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x3
(
x5
x6
x7
)
=
x5
(
x3
x7
)
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
x6
(
x2
x7
)
=
x2
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
(
x2
x6
)
x7
=
x2
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_conj
x0
x1
x2
x3
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
=
CD_mul
x0
x1
x2
x3
x4
x5
(
CD_conj
x0
x1
x2
x3
x7
)
(
CD_conj
x0
x1
x2
x3
x6
)
Known
conj_mul_CSNo
conj_mul_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
conj_CSNo
(
mul_CSNo
x0
x1
)
=
mul_CSNo
(
conj_CSNo
x1
)
(
conj_CSNo
x0
)
Known
minus_mul_CSNo_distrR
minus_mul_CSNo_distrR
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
mul_CSNo
x0
(
minus_CSNo
x1
)
=
minus_CSNo
(
mul_CSNo
x0
x1
)
Known
minus_mul_CSNo_distrL
minus_mul_CSNo_distrL
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
mul_CSNo
(
minus_CSNo
x0
)
x1
=
minus_CSNo
(
mul_CSNo
x0
x1
)
Theorem
conj_mul_HSNo
conj_mul_HSNo
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
conj_HSNo
(
mul_HSNo
x0
x1
)
=
mul_HSNo
(
conj_HSNo
x1
)
(
conj_HSNo
x0
)
(proof)
Known
CD_add_mul_distrL
CD_add_mul_distrL
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x3
(
x4
x6
x7
)
=
x4
(
x3
x6
)
(
x3
x7
)
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x4
(
x4
x6
x7
)
x8
=
x4
x6
(
x4
x7
x8
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x5
x6
(
x4
x7
x8
)
=
x4
(
x5
x6
x7
)
(
x5
x6
x8
)
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x5
(
x4
x6
x7
)
x8
=
x4
(
x5
x6
x8
)
(
x5
x7
x8
)
)
⟶
∀ x6 x7 x8 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_carr
x0
x1
x8
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
(
CD_add
x0
x1
x4
x7
x8
)
=
CD_add
x0
x1
x4
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x8
)
Known
mul_CSNo_distrL
mul_CSNo_distrL
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
x0
(
add_CSNo
x1
x2
)
=
add_CSNo
(
mul_CSNo
x0
x1
)
(
mul_CSNo
x0
x2
)
Known
mul_CSNo_distrR
mul_CSNo_distrR
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
(
add_CSNo
x0
x1
)
x2
=
add_CSNo
(
mul_CSNo
x0
x2
)
(
mul_CSNo
x1
x2
)
Theorem
mul_HSNo_distrL
mul_HSNo_distrL
:
∀ x0 x1 x2 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo
x2
⟶
mul_HSNo
x0
(
add_HSNo
x1
x2
)
=
add_HSNo
(
mul_HSNo
x0
x1
)
(
mul_HSNo
x0
x2
)
(proof)
Known
CD_add_mul_distrR
CD_add_mul_distrR
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x4
(
x4
x6
x7
)
x8
=
x4
x6
(
x4
x7
x8
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x5
x6
(
x4
x7
x8
)
=
x4
(
x5
x6
x7
)
(
x5
x6
x8
)
)
⟶
(
∀ x6 x7 x8 .
x1
x6
⟶
x1
x7
⟶
x1
x8
⟶
x5
(
x4
x6
x7
)
x8
=
x4
(
x5
x6
x8
)
(
x5
x7
x8
)
)
⟶
∀ x6 x7 x8 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_carr
x0
x1
x8
⟶
CD_mul
x0
x1
x2
x3
x4
x5
(
CD_add
x0
x1
x4
x6
x7
)
x8
=
CD_add
x0
x1
x4
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x8
)
(
CD_mul
x0
x1
x2
x3
x4
x5
x7
x8
)
Theorem
mul_HSNo_distrR
mul_HSNo_distrR
:
∀ x0 x1 x2 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo
x2
⟶
mul_HSNo
(
add_HSNo
x0
x1
)
x2
=
add_HSNo
(
mul_HSNo
x0
x2
)
(
mul_HSNo
x1
x2
)
(proof)
Known
CD_minus_mul_distrR
CD_minus_mul_distrR
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x3
(
x2
x6
)
=
x2
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
x6
(
x2
x7
)
=
x2
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
(
x2
x6
)
x7
=
x2
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_mul
x0
x1
x2
x3
x4
x5
x6
(
CD_minus
x0
x1
x2
x7
)
=
CD_minus
x0
x1
x2
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
Theorem
minus_mul_HSNo_distrR
minus_mul_HSNo_distrR
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
mul_HSNo
x0
(
minus_HSNo
x1
)
=
minus_HSNo
(
mul_HSNo
x0
x1
)
(proof)
Known
CD_minus_mul_distrL
CD_minus_mul_distrL
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x2
(
x4
x6
x7
)
=
x4
(
x2
x6
)
(
x2
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
x6
(
x2
x7
)
=
x2
(
x5
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x5
(
x2
x6
)
x7
=
x2
(
x5
x6
x7
)
)
⟶
∀ x6 x7 .
CD_carr
x0
x1
x6
⟶
CD_carr
x0
x1
x7
⟶
CD_mul
x0
x1
x2
x3
x4
x5
(
CD_minus
x0
x1
x2
x6
)
x7
=
CD_minus
x0
x1
x2
(
CD_mul
x0
x1
x2
x3
x4
x5
x6
x7
)
Theorem
minus_mul_HSNo_distrL
minus_mul_HSNo_distrL
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
mul_HSNo
(
minus_HSNo
x0
)
x1
=
minus_HSNo
(
mul_HSNo
x0
x1
)
(proof)
Known
CD_exp_nat_0
CD_exp_nat_0
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 .
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
0
=
1
Theorem
exp_HSNo_nat_0
exp_HSNo_nat_0
:
∀ x0 .
exp_HSNo_nat
x0
0
=
1
(proof)
Known
CD_exp_nat_S
CD_exp_nat_S
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 x7 .
nat_p
x7
⟶
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
(
ordsucc
x7
)
=
CD_mul
x0
x1
x2
x3
x4
x5
x6
(
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
x7
)
Theorem
exp_HSNo_nat_S
exp_HSNo_nat_S
:
∀ x0 x1 .
nat_p
x1
⟶
exp_HSNo_nat
x0
(
ordsucc
x1
)
=
mul_HSNo
x0
(
exp_HSNo_nat
x0
x1
)
(proof)
Known
CD_exp_nat_1
CD_exp_nat_1
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x1
1
⟶
x2
0
=
0
⟶
x3
0
=
0
⟶
x3
1
=
1
⟶
(
∀ x6 .
x1
x6
⟶
x4
0
x6
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
1
=
x6
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
1
=
x6
Theorem
exp_HSNo_nat_1
exp_HSNo_nat_1
:
∀ x0 .
HSNo
x0
⟶
exp_HSNo_nat
x0
1
=
x0
(proof)
Known
CD_exp_nat_2
CD_exp_nat_2
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
x1
0
⟶
x1
1
⟶
x2
0
=
0
⟶
x3
0
=
0
⟶
x3
1
=
1
⟶
(
∀ x6 .
x1
x6
⟶
x4
0
x6
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x4
x6
0
=
x6
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
0
x6
=
0
)
⟶
(
∀ x6 .
x1
x6
⟶
x5
x6
1
=
x6
)
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
2
=
CD_mul
x0
x1
x2
x3
x4
x5
x6
x6
Theorem
exp_HSNo_nat_2
exp_HSNo_nat_2
:
∀ x0 .
HSNo
x0
⟶
exp_HSNo_nat
x0
2
=
mul_HSNo
x0
x0
(proof)
Known
CD_exp_nat_CD
CD_exp_nat_CD
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
∀ x3 .
x3
∈
x2
⟶
nIn
x0
x3
)
⟶
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ι
.
(
∀ x6 .
x1
x6
⟶
x1
(
x2
x6
)
)
⟶
(
∀ x6 .
x1
x6
⟶
x1
(
x3
x6
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x4
x6
x7
)
)
⟶
(
∀ x6 x7 .
x1
x6
⟶
x1
x7
⟶
x1
(
x5
x6
x7
)
)
⟶
x1
0
⟶
x1
1
⟶
∀ x6 .
CD_carr
x0
x1
x6
⟶
∀ x7 .
nat_p
x7
⟶
CD_carr
x0
x1
(
CD_exp_nat
x0
x1
x2
x3
x4
x5
x6
x7
)
Theorem
HSNo_exp_HSNo_nat
HSNo_exp_HSNo_nat
:
∀ x0 .
HSNo
x0
⟶
∀ x1 .
nat_p
x1
⟶
HSNo
(
exp_HSNo_nat
x0
x1
)
(proof)
Theorem
add_CSNo_com_3b_1_2
add_CSNo_com_3b_1_2
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
add_CSNo
(
add_CSNo
x0
x1
)
x2
=
add_CSNo
(
add_CSNo
x0
x2
)
x1
(proof)
Theorem
add_CSNo_com_4_inner_mid
add_CSNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
add_CSNo
(
add_CSNo
x0
x1
)
(
add_CSNo
x2
x3
)
=
add_CSNo
(
add_CSNo
x0
x2
)
(
add_CSNo
x1
x3
)
(proof)
Theorem
add_CSNo_rotate_4_0312
add_CSNo_rotate_4_0312
:
∀ x0 x1 x2 x3 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
add_CSNo
(
add_CSNo
x0
x1
)
(
add_CSNo
x2
x3
)
=
add_CSNo
(
add_CSNo
x0
x3
)
(
add_CSNo
x1
x2
)
(proof)
Known
Complex_i_sqr
Complex_i_sqr
:
mul_CSNo
Complex_i
Complex_i
=
minus_CSNo
1
Theorem
Quaternion_i_sqr
Quaternion_i_sqr
:
mul_HSNo
Complex_i
Complex_i
=
minus_HSNo
1
(proof)
Theorem
Quaternion_j_sqr
Quaternion_j_sqr
:
mul_HSNo
Quaternion_j
Quaternion_j
=
minus_HSNo
1
(proof)
Known
conj_CSNo_i
conj_CSNo_i
:
conj_CSNo
Complex_i
=
minus_CSNo
Complex_i
Theorem
Quaternion_k_sqr
Quaternion_k_sqr
:
mul_HSNo
Quaternion_k
Quaternion_k
=
minus_HSNo
1
(proof)
Theorem
Quaternion_i_j
Quaternion_i_j
:
mul_HSNo
Complex_i
Quaternion_j
=
Quaternion_k
(proof)
Known
SNo_0
SNo_0
:
SNo
0
Theorem
Quaternion_j_k
Quaternion_j_k
:
mul_HSNo
Quaternion_j
Quaternion_k
=
Complex_i
(proof)
Theorem
Quaternion_k_i
Quaternion_k_i
:
mul_HSNo
Quaternion_k
Complex_i
=
Quaternion_j
(proof)
Theorem
Quaternion_j_i
Quaternion_j_i
:
mul_HSNo
Quaternion_j
Complex_i
=
minus_HSNo
Quaternion_k
(proof)
Known
SNo_1
SNo_1
:
SNo
1
Theorem
Quaternion_k_j
Quaternion_k_j
:
mul_HSNo
Quaternion_k
Quaternion_j
=
minus_HSNo
Complex_i
(proof)
Theorem
Quaternion_i_k
Quaternion_i_k
:
mul_HSNo
Complex_i
Quaternion_k
=
minus_HSNo
Quaternion_j
(proof)
Theorem
add_CSNo_rotate_3_1
add_CSNo_rotate_3_1
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
add_CSNo
x0
(
add_CSNo
x1
x2
)
=
add_CSNo
x2
(
add_CSNo
x0
x1
)
(proof)
Known
mul_CSNo_com
mul_CSNo_com
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
mul_CSNo
x0
x1
=
mul_CSNo
x1
x0
Known
mul_CSNo_assoc
mul_CSNo_assoc
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
x0
(
mul_CSNo
x1
x2
)
=
mul_CSNo
(
mul_CSNo
x0
x1
)
x2
Theorem
mul_CSNo_rotate_3_1
mul_CSNo_rotate_3_1
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
x0
(
mul_CSNo
x1
x2
)
=
mul_CSNo
x2
(
mul_CSNo
x0
x1
)
(proof)
Theorem
conj_HSNo_i
conj_HSNo_i
:
conj_HSNo
Complex_i
=
minus_HSNo
Complex_i
(proof)
Theorem
conj_HSNo_j
conj_HSNo_j
:
conj_HSNo
Quaternion_j
=
minus_HSNo
Quaternion_j
(proof)
Theorem
conj_HSNo_k
conj_HSNo_k
:
conj_HSNo
Quaternion_k
=
minus_HSNo
Quaternion_k
(proof)
previous assets