Search for blocks/addresses/...

Proofgold Asset

asset id
06c7b5e286eafcd81e8d5568adf32294ca1030a57e311ba91fc67f3c0b3550dd
asset hash
d4e996cde7bfb82590f55ad787e981a2bdfb60bbdbaa56e2cf5efb83538d055a
bday / block
19915
tx
32c84..
preasset
doc published by Pr4zB..
Param binunionbinunion : ιιι
Param SingSing : ιι
Definition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)
Param UPairUPair : ιιι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known 1aece.. : ∀ x0 x1 x2 x3 x4 . x4SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3∀ x5 : ι → ο . x5 x0x5 x1x5 x2x5 x3x5 x4
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Theorem 3cea6.. : ∀ x0 x1 x2 x3 x4 x5 . x5SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4∀ x6 : ι → ο . x6 x0x6 x1x6 x2x6 x3x6 x4x6 x5 (proof)
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Definition u6 := ordsucc u5
Definition u7 := ordsucc u6
Definition u8 := ordsucc u7
Definition u9 := ordsucc u8
Param equipequip : ιιο
Param setminussetminus : ιιι
Param nat_pnat_p : ιο
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3x2)x2
Known 48e0f.. : ∀ x0 . nat_p x0∀ x1 . or (atleastp x1 x0) (atleastp (ordsucc x0) x1)
Known nat_3nat_3 : nat_p 3
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known nat_8nat_8 : nat_p 8
Param binintersectbinintersect : ιιι
Known a8a92.. : ∀ x0 x1 . x0 = binunion (setminus x0 x1) (binintersect x0 x1)
Known binintersect_combinintersect_com : ∀ x0 x1 . binintersect x0 x1 = binintersect x1 x0
Known binintersect_Subq_eq_1binintersect_Subq_eq_1 : ∀ x0 x1 . x0x1binintersect x0 x1 = x0
Param setsumsetsum : ιιι
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Definition nInnIn := λ x0 x1 . not (x0x1)
Known 385ef.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3(∀ x4 . x4x0nIn x4 x1)atleastp (binunion x0 x1) (setsum x2 x3)
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known 5b07e.. : ∀ x0 x1 x2 x3 x4 . (x0 = x1∀ x5 : ο . x5)(x0 = x2∀ x5 : ο . x5)(x0 = x3∀ x5 : ο . x5)(x0 = x4∀ x5 : ο . x5)(x1 = x2∀ x5 : ο . x5)(x1 = x3∀ x5 : ο . x5)(x1 = x4∀ x5 : ο . x5)(x2 = x3∀ x5 : ο . x5)(x2 = x4∀ x5 : ο . x5)(x3 = x4∀ x5 : ο . x5)equip (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) u5
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Param add_natadd_nat : ιιι
Known e705e.. : add_nat u5 u3 = u8
Known add_nat_comadd_nat_com : ∀ x0 . nat_p x0∀ x1 . nat_p x1add_nat x0 x1 = add_nat x1 x0
Known nat_5nat_5 : nat_p 5
Known c88e0.. : ∀ x0 x1 x2 x3 . nat_p x0nat_p x1equip x0 x2equip x1 x3equip (add_nat x0 x1) (setsum x2 x3)
Known equip_refequip_ref : ∀ x0 . equip x0 x0
Param If_iIf_i : οιιι
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known If_i_orIf_i_or : ∀ x0 : ο . ∀ x1 x2 . or (If_i x0 x1 x2 = x1) (If_i x0 x1 x2 = x2)
Known In_0_3In_0_3 : 03
Known In_1_3In_1_3 : 13
Known In_2_3In_2_3 : 23
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Known c62d8.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 . x2u9∀ x3 . x3u9∀ x4 . x4u9(x1 = x2∀ x5 : ο . x5)(x1 = x3∀ x5 : ο . x5)(x1 = x4∀ x5 : ο . x5)(x2 = x3∀ x5 : ο . x5)(x2 = x4∀ x5 : ο . x5)(x3 = x4∀ x5 : ο . x5)x0 x1 x2x0 x1 x3x0 x1 x4∀ x5 . x5u9x0 x1 x5x5SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4
Known FalseEFalseE : False∀ x0 : ο . x0
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Known neq_0_1neq_0_1 : 0 = 1∀ x0 : ο . x0
Known neq_0_2neq_0_2 : 0 = 2∀ x0 : ο . x0
Known neq_1_0neq_1_0 : u1 = 0∀ x0 : ο . x0
Known neq_2_0neq_2_0 : u2 = 0∀ x0 : ο . x0
Known neq_1_2neq_1_2 : 1 = 2∀ x0 : ο . x0
Known neq_2_1neq_2_1 : u2 = u1∀ x0 : ο . x0
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known SingISingI : ∀ x0 . x0Sing x0
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known UPairI2UPairI2 : ∀ x0 x1 . x1UPair x0 x1
Known UPairI1UPairI1 : ∀ x0 x1 . x0UPair x0 x1
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Known 0728d.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1)∀ x1 . x1u9∀ x2 . x2u9∀ x3 . x3u9∀ x4 . x4u9not (x0 x1 x2)not (x0 x1 x3)not (x0 x1 x4)not (x0 x2 x3)not (x0 x2 x4)not (x0 x3 x4)∀ x5 : ο . (x1 = x2x5)(x1 = x3x5)(x1 = x4x5)(x2 = x3x5)(x2 = x4x5)(x3 = x4x5)x5
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Theorem 0799b.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 . x2u9∀ x3 . x3u9∀ x4 . x4u9∀ x5 . x5u9(x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x1 = x5∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x2 = x5∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)(x3 = x5∀ x6 : ο . x6)(x4 = x5∀ x6 : ο . x6)x0 x1 x2x0 x1 x3x0 x1 x4not (x0 x2 x3)not (x0 x2 x4)not (x0 x3 x4)x0 x5 x2x0 x5 x3x0 x5 x4False (proof)