∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . (∀ x4 . prim1 x4 x0 ⟶ ∀ x5 . prim1 x5 x0 ⟶ prim1 (x2 x4 x5) x0) ⟶ (∀ x4 . prim1 x4 x0 ⟶ ∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ x2 x4 (x2 x5 x6) = x2 (x2 x4 x5) x6) ⟶ (∀ x4 . prim1 x4 x0 ⟶ ∀ x5 . prim1 x5 x0 ⟶ x2 x4 x5 = x2 x5 x4) ⟶ prim1 x1 x0 ⟶ (∀ x4 . prim1 x4 x0 ⟶ x2 x1 x4 = x4) ⟶ (∀ x4 . prim1 x4 x0 ⟶ ∀ x5 : ο . (∀ x6 . and (prim1 x6 x0) (x2 x4 x6 = x1) ⟶ x5) ⟶ x5) ⟶ (∀ x4 . prim1 x4 x0 ⟶ ∀ x5 . prim1 x5 x0 ⟶ prim1 (x3 x4 x5) x0) ⟶ (∀ x4 . prim1 x4 x0 ⟶ ∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ x3 x4 (x3 x5 x6) = x3 (x3 x4 x5) x6) ⟶ (∀ x4 . prim1 x4 x0 ⟶ ∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ x3 x4 (x2 x5 x6) = x2 (x3 x4 x5) (x3 x4 x6)) ⟶ (∀ x4 . prim1 x4 x0 ⟶ ∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ x3 (x2 x4 x5) x6 = x2 (x3 x4 x6) (x3 x5 x6)) ⟶ explicit_Ring x0 x1 x2 x3 |
|