vout |
---|
PrJAV../123fe.. 6.48 bars TMFn1../bf5c1.. ownership of 6b23b.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0 TMJrc../bf78d.. ownership of e6660.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0 TMYzs../7e419.. ownership of 455b2.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0 TMUxU../ea8b9.. ownership of 11029.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0 PUJkc../5f2a5.. doc published by Pr6Pc..Param explicit_Realsexplicit_Reals : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ο) → οDefinition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Param ReplSep2ReplSep2 : ι → (ι → ι) → (ι → ι → ο) → CT2 ιParam TrueTrue : οParam SepSep : ι → (ι → ο) → ιParam explicit_Field_minusexplicit_Field_minus : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → ι → ιKnown 89287.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ ∀ x7 : ο . ((∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x6 x8 x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 : ι → ο . (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x8 = x6 x10 x11 ⟶ x9 (x6 x10 x11)) ⟶ x9 x8) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 x8 x9 = x6 x11 x12))) = x8) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ prim0 (λ x11 . and (x11 ∈ x0) (x6 x8 x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x8 x9 = x6 x13 x14)))) x11)) = x9) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))) ∈ x0) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)) ∈ x0) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ x8 = x6 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))) ⟶ (∀ x8 . x8 ∈ x0 ⟶ x6 x8 x1 ∈ {x9 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6|x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12)))) x1 = x9}) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12))) = prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))) ⟶ prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11)) = prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)) ⟶ x8 = x9) ⟶ x6 x1 x1 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ x6 x2 x1 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x6 (x3 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x10 x11 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13 ∈ x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x10 x11 = x6 x15 x16)))) x13)))) = x6 (x3 x8 x10) (x3 x9 x11)) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))) (x3 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))) = x6 (x3 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))) (x3 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11))))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10)))) ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12))) = x3 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)) = x3 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x10 x11 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x10 x11 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x10 x11 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x10 x11 = x6 x13 x14)))))) = x6 (x3 (x4 x8 x10) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 x9 x11))) (x3 (x4 x8 x11) (x4 x9 x10))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12)))))) = x6 (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10))))) ∈ x0) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))) ∈ x0) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11)))))) ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))))) = x6 x11 x12))) = x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)) = x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12)))))) ⟶ x7) ⟶ x7Theorem 455b2.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ ∀ x7 : ο . ((∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x6 x8 x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 x8 x9 = x6 x11 x13)) ⟶ x12) ⟶ x12) = x8) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 x8 x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 x8 x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) = x9) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ (∃ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11)) ⟶ x10) ⟶ x10) ∈ x0) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12 ∈ x0 ⟶ (∃ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14)) ⟶ x13) ⟶ x13)) x9 ⟶ x10) ⟶ x10) ∈ x0) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12) = prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12) ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) = prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) ⟶ x8 = x9) ⟶ x6 x1 x1 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ x6 x2 x1 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12)) ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x9 = x6 x10 x12)) ⟶ x11) ⟶ x11))) (x3 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x9 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11))) ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) = x6 x11 x13)) ⟶ x12) ⟶ x12) = x3 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) = x3 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12)) ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x9 = x6 x10 x12)) ⟶ x11) ⟶ x11))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x9 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11))))) (x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12)) ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x9 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11))) (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x9 = x6 x10 x12)) ⟶ x11) ⟶ x11)))) ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12) = x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) = x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12)))) ⟶ x7) ⟶ x7...
Param explicit_Fieldexplicit_Field : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → οParam explicit_Complexexplicit_Complex : ι → (ι → ι) → (ι → ι) → ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → οParam SubqSubq : ι → ι → οKnown 10d6b.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ explicit_Field (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))))) ⟶ and (explicit_Complex (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (x8 ∈ x0) (∃ x9 . and (x9 ∈ x0) (x7 = x6 x8 x9)))) x1) (λ x7 . x6 (prim0 (λ x8 . and (x8 ∈ x0) (x7 = x6 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10)))))))) ((∀ x7 . x7 ∈ x0 ⟶ x6 x7 x1 = x7) ⟶ and (and (and (and (and (x0 ⊆ ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (∀ x7 . x7 ∈ x0 ⟶ prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10))) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x6 (x3 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))) = x3 x7 x8)) (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))))) = x4 x7 x8))Theorem 6b23b.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ explicit_Field (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))))) ⟶ ∀ x7 : ο . (explicit_Complex (ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6) (λ x8 . x6 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10)))) x1) (λ x8 . x6 (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x8 x9 . x6 (x3 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10))))) (λ x8 x9 . x6 (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))))) ⟶ ((∀ x8 . x8 ∈ x0 ⟶ x6 x8 x1 = x8) ⟶ ∀ x8 : ο . ((∀ x9 : ο . ((∀ x10 : ο . ((∀ x11 : ο . ((∀ x12 : ο . (x0 ⊆ ReplSep2 x0 (λ x13 . x0) (λ x13 x14 . True) x6 ⟶ (∀ x13 . x13 ∈ x0 ⟶ prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x13 = x6 x15 x16))) = x13) ⟶ x12) ⟶ x12) ⟶ x6 x1 x1 = x1 ⟶ x11) ⟶ x11) ⟶ x6 x2 x1 = x2 ⟶ x10) ⟶ x10) ⟶ (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x6 (x3 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x10 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x11 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13 ∈ x0) (x10 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x10 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x11 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x11 = x6 x15 x16)))) x13)))) = x3 x10 x11) ⟶ x9) ⟶ x9) ⟶ (∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x10 = x6 x12 x13))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x12 . and (x12 ∈ x0) (x9 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x9 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (x12 ∈ x0) (x10 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x10 = x6 x14 x15)))) x12)))))) (x3 (x4 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) (prim0 (λ x12 . and (x12 ∈ x0) (x10 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x10 = x6 x14 x15)))) x12)))) (x4 (prim0 (λ x12 . and (x12 ∈ x0) (x9 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x9 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x10 = x6 x12 x13)))))) = x4 x9 x10) ⟶ x8) ⟶ x8) ⟶ x7) ⟶ x7...
|
|