Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrJAV../57527..
PUWYu../97a90..
vout
PrJAV../123fe.. 6.48 bars
TMFn1../bf5c1.. ownership of 6b23b.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMJrc../bf78d.. ownership of e6660.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYzs../7e419.. ownership of 455b2.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMUxU../ea8b9.. ownership of 11029.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
PUJkc../5f2a5.. doc published by Pr6Pc..
Param explicit_Realsexplicit_Reals : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param ReplSep2ReplSep2 : ι(ιι) → (ιιο) → CT2 ι
Param TrueTrue : ο
Param SepSep : ι(ιο) → ι
Param explicit_Field_minusexplicit_Field_minus : ιιι(ιιι) → (ιιι) → ιι
Known 89287.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))∀ x7 : ο . ((∀ x8 . x8x0∀ x9 . x9x0x6 x8 x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 : ι → ο . (∀ x10 . x10x0∀ x11 . x11x0x8 = x6 x10 x11x9 (x6 x10 x11))x9 x8)(∀ x8 . x8x0∀ x9 . x9x0prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 x8 x9 = x6 x11 x12))) = x8)(∀ x8 . x8x0∀ x9 . x9x0prim0 (λ x11 . and (x11x0) (x6 x8 x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x8 x9 = x6 x13 x14)))) x11)) = x9)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10)))x0)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9))x0)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6x8 = x6 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))))(∀ x8 . x8x0x6 x8 x1{x9 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6|x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12)))) x1 = x9})(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12))) = prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12)))prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) x11)) = prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))) x11))x8 = x9)x6 x1 x1ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6x6 x2 x1ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6(∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0x6 (x3 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x10 x11 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x10 x11 = x6 x15 x16)))) x13)))) = x6 (x3 x8 x10) (x3 x9 x11))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12))))) (x3 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))) x11)))) = x6 (x3 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12))))) (x3 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))) x11)))))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10))))ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12))) = x3 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12)))))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . and (x11x0) (x6 (x3 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)) = x3 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))) x11))))(∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x10 x11 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x10 x11 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x10 x11 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x10 x11 = x6 x13 x14)))))) = x6 (x3 (x4 x8 x10) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 x9 x11))) (x3 (x4 x8 x11) (x4 x9 x10)))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12)))))) = x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12)))))))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10)))))x0)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11)))))x0)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))))ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))))) = x6 x11 x12))) = x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))) x11))))))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)) = x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12))))))x7)x7
Theorem 455b2.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))∀ x7 : ο . ((∀ x8 . x8x0∀ x9 . x9x0x6 x8 x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6)(∀ x8 . x8x0∀ x9 . x9x0prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 x8 x9 = x6 x11 x13))x12)x12) = x8)(∀ x8 . x8x0∀ x9 . x9x0prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 x8 x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 x8 x9 = x6 x14 x16))x15)x15)) x11x12)x12) = x9)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x9 . ∀ x10 : ο . (x9x0(∃ x11 . and (x11x0) (x8 = x6 x9 x11))x10)x10)x0)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x9 . ∀ x10 : ο . (x9x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12x0(∃ x14 . and (x14x0) (x8 = x6 x12 x14))x13)x13)) x9x10)x10)x0)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x8 = x6 x11 x13))x12)x12) = prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x9 = x6 x11 x13))x12)x12)prim0 (λ x11 . ∀ x12 : ο . (x11x0x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) x11x12)x12) = prim0 (λ x11 . ∀ x12 : ο . (x11x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15)) x11x12)x12)x8 = x9)x6 x1 x1ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6x6 x2 x1ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (prim0 (λ x10 . ∀ x11 : ο . (x10x0(∃ x12 . and (x12x0) (x8 = x6 x10 x12))x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10x0(∃ x12 . and (x12x0) (x9 = x6 x10 x12))x11)x11))) (x3 (prim0 (λ x10 . ∀ x11 : ο . (x10x0x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∃ x15 . and (x15x0) (x8 = x6 x13 x15))x14)x14)) x10x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10x0x9 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∃ x15 . and (x15x0) (x9 = x6 x13 x15))x14)x14)) x10x11)x11)))ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) = x6 x11 x13))x12)x12) = x3 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x8 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x9 = x6 x11 x13))x12)x12)))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) = x6 x14 x16))x15)x15)) x11x12)x12) = x3 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15)) x11x12)x12)))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10x0(∃ x12 . and (x12x0) (x8 = x6 x10 x12))x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10x0(∃ x12 . and (x12x0) (x9 = x6 x10 x12))x11)x11))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10x0x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∃ x15 . and (x15x0) (x8 = x6 x13 x15))x14)x14)) x10x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10x0x9 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∃ x15 . and (x15x0) (x9 = x6 x13 x15))x14)x14)) x10x11)x11))))) (x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10x0(∃ x12 . and (x12x0) (x8 = x6 x10 x12))x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10x0x9 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∃ x15 . and (x15x0) (x9 = x6 x13 x15))x14)x14)) x10x11)x11))) (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10x0x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∃ x15 . and (x15x0) (x8 = x6 x13 x15))x14)x14)) x10x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10x0(∃ x12 . and (x12x0) (x9 = x6 x10 x12))x11)x11))))ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12) = x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x8 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x9 = x6 x11 x13))x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15)) x11x12)x12)))))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12) = x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x8 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x9 = x6 x11 x13))x12)x12))))x7)x7
...

Param explicit_Fieldexplicit_Field : ιιι(ιιι) → (ιιι) → ο
Param explicit_Complexexplicit_Complex : ι(ιι) → (ιι) → ιιι(ιιι) → (ιιι) → ο
Param SubqSubq : ιιο
Known 10d6b.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))explicit_Field (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10)))))))and (explicit_Complex (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (x8x0) (∃ x9 . and (x9x0) (x7 = x6 x8 x9)))) x1) (λ x7 . x6 (prim0 (λ x8 . and (x8x0) (x7 = x6 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10)))))))) ((∀ x7 . x7x0x6 x7 x1 = x7)and (and (and (and (and (x0ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (∀ x7 . x7x0prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10))) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . x7x0∀ x8 . x8x0x6 (x3 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10)))) = x3 x7 x8)) (∀ x7 . x7x0∀ x8 . x8x0x6 (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))))) = x4 x7 x8))
Theorem 6b23b.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))explicit_Field (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10)))))))∀ x7 : ο . (explicit_Complex (ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6) (λ x8 . x6 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10)))) x1) (λ x8 . x6 (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x8 x9 . x6 (x3 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10))))) (λ x8 x9 . x6 (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11)))))))((∀ x8 . x8x0x6 x8 x1 = x8)∀ x8 : ο . ((∀ x9 : ο . ((∀ x10 : ο . ((∀ x11 : ο . ((∀ x12 : ο . (x0ReplSep2 x0 (λ x13 . x0) (λ x13 x14 . True) x6(∀ x13 . x13x0prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x13 = x6 x15 x16))) = x13)x12)x12)x6 x1 x1 = x1x11)x11)x6 x2 x1 = x2x10)x10)(∀ x10 . x10x0∀ x11 . x11x0x6 (x3 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x10 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x11 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13x0) (x10 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x10 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x11 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x11 = x6 x15 x16)))) x13)))) = x3 x10 x11)x9)x9)(∀ x9 . x9x0∀ x10 . x10x0x6 (x3 (x4 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x10 = x6 x12 x13))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x12 . and (x12x0) (x9 = x6 (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x9 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (x12x0) (x10 = x6 (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x10 = x6 x14 x15)))) x12)))))) (x3 (x4 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) (prim0 (λ x12 . and (x12x0) (x10 = x6 (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x10 = x6 x14 x15)))) x12)))) (x4 (prim0 (λ x12 . and (x12x0) (x9 = x6 (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x9 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x10 = x6 x12 x13)))))) = x4 x9 x10)x8)x8)x7)x7
...