Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrJAV../d3179..
PUhMq../efb5c..
vout
PrJAV../3aa02.. 6.29 bars
TMNdj../ac17b.. ownership of a45e9.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMZAU../8b459.. ownership of c1725.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMExU../12480.. ownership of 2ff2b.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMPV2../0b2b7.. ownership of b58f7.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMFXP../ec06d.. ownership of 61a49.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMHAB../5db45.. ownership of df790.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMGkA../ec37b.. ownership of 9b0ab.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMPwE../56cd9.. ownership of afb22.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMQdy../25039.. ownership of 65419.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMHtw../6bf7a.. ownership of 3b82b.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMQkD../ce89b.. ownership of d617f.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMZZP../cb51d.. ownership of e63b5.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMbm6../9368a.. ownership of 4d43e.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMZme../fc67a.. ownership of f9e62.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMS8k../ecd5b.. ownership of 0eb6e.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMbWC../537e7.. ownership of 61f0c.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMQPz../82632.. ownership of 5f0a7.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMSzN../faaea.. ownership of 017fe.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMNdH../dbbaf.. ownership of 35134.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMcbM../5ef50.. ownership of 87925.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMV8p../2c64b.. ownership of adbd0.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMVQ8../106f8.. ownership of 060e8.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMFUv../02016.. ownership of fdd42.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMJ4V../e94e4.. ownership of 008a7.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMLHJ../4b25d.. ownership of a2de5.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMUvj../36981.. ownership of ac462.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMUwc../005d6.. ownership of 7be7e.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMH3T../08f7c.. ownership of 60893.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMUHo../dc920.. ownership of 49002.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMK4N../b6d42.. ownership of 6b431.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMWFE../8927b.. ownership of fc79c.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMdQ7../ade89.. ownership of 75a9e.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMcj8../9fcf8.. ownership of c2b9c.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMb4X../0caba.. ownership of 64bfc.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMSUN../710e1.. ownership of 78922.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMQqU../4b62d.. ownership of a1f47.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMSDy../3e67f.. ownership of e739f.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMFA9../c3119.. ownership of 55dc2.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMHDY../47a51.. ownership of 116be.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMX92../b60fe.. ownership of 1f7e7.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMMV3../a6382.. ownership of 56adc.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMGUQ../ab03e.. ownership of f49a3.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMNUa../8205b.. ownership of d4c42.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMaEm../d541b.. ownership of 8aa0c.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMT3M../93737.. ownership of ca006.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMSLZ../9b4dc.. ownership of 52e52.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMSbR../70367.. ownership of 8cd9e.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMXtd../25c4b.. ownership of 1dfc6.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMTFy../ec23d.. ownership of 14573.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMccD../d73f4.. ownership of 87a9e.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMXSK../54428.. ownership of e102a.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMEpd../6eb8d.. ownership of bbbec.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMc4S../0cebd.. ownership of ce353.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMGHA../95939.. ownership of 862fd.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYiS../2245f.. ownership of 31d61.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMTqK../5d260.. ownership of a65ac.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMaYV../765e2.. ownership of 93bb8.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMb7x../bc878.. ownership of 95c74.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMQvu../16577.. ownership of 701ed.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMPnE../36602.. ownership of cab4a.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMXHd../f2a7e.. ownership of 221fb.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYWs../6186b.. ownership of d488f.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMU6u../e7d72.. ownership of 15727.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMH5o../dfc8b.. ownership of 751db.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMX7v../0cad4.. ownership of 88201.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMPdW../3f0c5.. ownership of e8baa.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMR42../7b384.. ownership of 39bed.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMWc1../f5f9d.. ownership of bd1d4.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMExh../d23d0.. ownership of 58988.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMZQm../db43b.. ownership of 08c89.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMRyc../7b49c.. ownership of a5736.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMJ8D../b9831.. ownership of baf30.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMaFA../ed85d.. ownership of a1211.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMTjW../b3d71.. ownership of e8ae1.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMcrA../74369.. ownership of ff695.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMXHN../acfb0.. ownership of 5ff57.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMLhe../3a6ce.. ownership of 23218.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMKzv../a7924.. ownership of 98ac5.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMMMV../3d07d.. ownership of d7fd8.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMLSW../1de0a.. ownership of 09095.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMVd1../376d8.. ownership of b7c73.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMWr5../b08da.. ownership of fdd8e.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMS87../4094b.. ownership of 66a3b.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYZA../863e5.. ownership of 47bc6.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYv4../39a87.. ownership of edd0d.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMNT1../ac287.. ownership of cedc0.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMMmV../8cc93.. ownership of 57151.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMGdw../e058e.. ownership of f983d.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMPP9../34f2e.. ownership of fe164.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMe11../36d78.. ownership of 7affb.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMGNW../0970e.. ownership of 638a4.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMQXp../b206d.. ownership of 3149f.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMUSi../4d761.. ownership of afda6.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMUxQ../0aa14.. ownership of 70df0.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMN3d../e968e.. ownership of 1f84f.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMJpo../d2410.. ownership of 8492e.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMHUM../e3ff2.. ownership of 0a4db.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMQNH../79f6e.. ownership of 255c2.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMcag../a21ea.. ownership of 2a63f.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMMed../0662f.. ownership of 30ad7.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMUL7../2f4e6.. ownership of 0610d.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMZnq../f523b.. ownership of 736c8.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMMXx../e1f46.. ownership of f5d38.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMXGA../6e002.. ownership of 18dcd.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
PUSVY../cc427.. doc published by Pr6Pc..
Param explicit_Fieldexplicit_Field : ιιι(ιιι) → (ιιι) → ο
Known f16ac.. : ∀ x0 x1 x2 . ∀ x3 x4 x5 x6 : ι → ι → ι . (∀ x7 . x7x0∀ x8 . x8x0x3 x7 x8 = x5 x7 x8)(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8 = x6 x7 x8)explicit_Field x0 x1 x2 x3 x4explicit_Field x0 x1 x2 x5 x6
Param apap : ιιι
Definition decode_bdecode_b := λ x0 x1 . ap (ap x0 x1)
Param lamSigma : ι(ιι) → ι
Param ordsuccordsucc : ιι
Param If_iIf_i : οιιι
Param encode_bencode_b : ιCT2 ι
Definition pack_b_b_e_epack_b_b_e_e := λ x0 . λ x1 x2 : ι → ι → ι . λ x3 x4 . lam 5 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) (encode_b x0 x1) (If_i (x5 = 2) (encode_b x0 x2) (If_i (x5 = 3) x3 x4))))
Known pack_b_b_e_e_1_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 x5 . x5x0∀ x6 . x6x0x1 x5 x6 = decode_b (ap (pack_b_b_e_e x0 x1 x2 x3 x4) 1) x5 x6
Known pack_b_b_e_e_2_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 x5 . x5x0∀ x6 . x6x0x2 x5 x6 = decode_b (ap (pack_b_b_e_e x0 x1 x2 x3 x4) 2) x5 x6
Definition field0RealsStruct_carrier := λ x0 . ap x0 0
Definition field1bRealsStruct_plus := λ x0 . decode_b (ap x0 1)
Definition field2bRealsStruct_mult := λ x0 . decode_b (ap x0 2)
Param decode_rdecode_r : ιιιο
Definition RealsStruct_leqRealsStruct_leq := λ x0 . decode_r (ap x0 3)
Definition field4RealsStruct_zero := λ x0 . ap x0 4
Definition RealsStruct_oneRealsStruct_one := λ x0 . ap x0 5
Definition Field_of_RealsStructField_of_RealsStruct := λ x0 . pack_b_b_e_e (field0 x0) (field1b x0) (field2b x0) (field4 x0) (RealsStruct_one x0)
Param explicit_Field_minusexplicit_Field_minus : ιιι(ιιι) → (ιιι) → ιι
Definition Field_minusField_minus := λ x0 x1 . If_i (x1ap x0 0) (explicit_Field_minus (ap x0 0) (ap x0 3) (ap x0 4) (decode_b (ap x0 1)) (decode_b (ap x0 2)) x1) 0
Known Field_of_RealsStruct_0Field_of_RealsStruct_0 : ∀ x0 . ap (Field_of_RealsStruct x0) 0 = field0 x0
Known Field_of_RealsStruct_1Field_of_RealsStruct_1 : ∀ x0 x1 . x1field0 x0∀ x2 . x2field0 x0ap (ap (ap (Field_of_RealsStruct x0) 1) x1) x2 = field1b x0 x1 x2
Known Field_of_RealsStruct_2Field_of_RealsStruct_2 : ∀ x0 x1 . x1field0 x0∀ x2 . x2field0 x0ap (ap (ap (Field_of_RealsStruct x0) 2) x1) x2 = field2b x0 x1 x2
Known Field_of_RealsStruct_3Field_of_RealsStruct_3 : ∀ x0 . ap (Field_of_RealsStruct x0) 3 = field4 x0
Known Field_of_RealsStruct_4Field_of_RealsStruct_4 : ∀ x0 . ap (Field_of_RealsStruct x0) 4 = RealsStruct_one x0
Param struct_b_b_e_estruct_b_b_e_e : ιο
Known pack_struct_b_b_e_e_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)∀ x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x2 x3 x4x0)∀ x3 . x3x0∀ x4 . x4x0struct_b_b_e_e (pack_b_b_e_e x0 x1 x2 x3 x4)
Param unpack_b_b_e_e_ounpack_b_b_e_e_o : ι(ι(ιιι) → (ιιι) → ιιο) → ο
Known unpack_b_b_e_e_o_equnpack_b_b_e_e_o_eq : ∀ x0 : ι → (ι → ι → ι)(ι → ι → ι)ι → ι → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 . (∀ x6 : ι → ι → ι . (∀ x7 . x7x1∀ x8 . x8x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι → ι . (∀ x8 . x8x1∀ x9 . x9x1x3 x8 x9 = x7 x8 x9)x0 x1 x6 x7 x4 x5 = x0 x1 x2 x3 x4 x5)unpack_b_b_e_e_o (pack_b_b_e_e x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition e08de.. := λ x0 x1 x2 x3 . and (RealsStruct_leq x1 x2 x3) (x2 = x3∀ x4 : ο . x4)
Param RealsStructRealsStruct : ιο
Param encode_rencode_r : ι(ιιο) → ι
Definition pack_b_b_r_e_epack_b_b_r_e_e := λ x0 . λ x1 x2 : ι → ι → ι . λ x3 : ι → ι → ο . λ x4 x5 . lam 6 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) (encode_b x0 x1) (If_i (x6 = 2) (encode_b x0 x2) (If_i (x6 = 3) (encode_r x0 x3) (If_i (x6 = 4) x4 x5)))))
Known RealsStruct_etaRealsStruct_eta : ∀ x0 . RealsStruct x0x0 = pack_b_b_r_e_e (field0 x0) (field1b x0) (field2b x0) (RealsStruct_leq x0) (field4 x0) (RealsStruct_one x0)
Param explicit_Realsexplicit_Reals : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Known RealsStruct_explicit_RealsRealsStruct_explicit_Reals : ∀ x0 . RealsStruct x0explicit_Reals (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0)
Known RealsStruct_zero_InRealsStruct_zero_In : ∀ x0 . RealsStruct x0field4 x0field0 x0
Known RealsStruct_one_InRealsStruct_one_In : ∀ x0 . RealsStruct x0RealsStruct_one x0field0 x0
Known RealsStruct_plus_closRealsStruct_plus_clos : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field1b x0 x1 x2field0 x0
Known RealsStruct_mult_closRealsStruct_mult_clos : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field2b x0 x1 x2field0 x0
Known RealsStruct_plus_assocRealsStruct_plus_assoc : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field1b x0 x1 (field1b x0 x2 x3) = field1b x0 (field1b x0 x1 x2) x3
Known RealsStruct_plus_comRealsStruct_plus_com : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field1b x0 x1 x2 = field1b x0 x2 x1
Known RealsStruct_zero_LRealsStruct_zero_L : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0field1b x0 (field4 x0) x1 = x1
Known RealsStruct_mult_assocRealsStruct_mult_assoc : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field2b x0 x1 (field2b x0 x2 x3) = field2b x0 (field2b x0 x1 x2) x3
Known RealsStruct_mult_comRealsStruct_mult_com : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field2b x0 x1 x2 = field2b x0 x2 x1
Known RealsStruct_one_LRealsStruct_one_L : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0field2b x0 (RealsStruct_one x0) x1 = x1
Known RealsStruct_distr_LRealsStruct_distr_L : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field2b x0 x1 (field1b x0 x2 x3) = field1b x0 (field2b x0 x1 x2) (field2b x0 x1 x3)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Param explicit_OrderedFieldexplicit_OrderedField : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Param ltlt : ιιι(ιιι) → (ιιι) → (ιιο) → ιιο
Param SepSep : ι(ιο) → ι
Param natOfOrderedField_pnatOfOrderedField_p : ιιι(ιιι) → (ιιι) → (ιιο) → ιο
Param setexpsetexp : ιιι
Known explicit_Reals_Eexplicit_Reals_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ο . (explicit_Reals x0 x1 x2 x3 x4 x5explicit_OrderedField x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0lt x0 x1 x2 x3 x4 x5 x1 x7x5 x1 x8∀ x9 : ο . (∀ x10 . and (x10Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) (x5 x8 (x4 x10 x7))x9)x9)(∀ x7 . x7setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))∀ x8 . x8setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))(∀ x9 . x9Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (and (x5 (ap x7 x9) (ap x8 x9)) (x5 (ap x7 x9) (ap x7 (x3 x9 x2)))) (x5 (ap x8 (x3 x9 x2)) (ap x8 x9)))∀ x9 : ο . (∀ x10 . and (x10x0) (∀ x11 . x11Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (x5 (ap x7 x11) x10) (x5 x10 (ap x8 x11)))x9)x9)x6)explicit_Reals x0 x1 x2 x3 x4 x5x6
Param iffiff : οοο
Known explicit_OrderedField_Eexplicit_OrderedField_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ο . (explicit_OrderedField x0 x1 x2 x3 x4 x5explicit_Field x0 x1 x2 x3 x4(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x5 x7 x8x5 x8 x9x5 x7 x9)(∀ x7 . x7x0∀ x8 . x8x0iff (and (x5 x7 x8) (x5 x8 x7)) (x7 = x8))(∀ x7 . x7x0∀ x8 . x8x0or (x5 x7 x8) (x5 x8 x7))(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x5 x7 x8x5 (x3 x7 x9) (x3 x8 x9))(∀ x7 . x7x0∀ x8 . x8x0x5 x1 x7x5 x1 x8x5 x1 (x4 x7 x8))x6)explicit_OrderedField x0 x1 x2 x3 x4 x5x6
Theorem RealsStruct_leq_linearRealsStruct_leq_linear : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0or (RealsStruct_leq x0 x1 x2) (RealsStruct_leq x0 x2 x1) (proof)
Known RealsStruct_leq_plusRealsStruct_leq_plus : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0RealsStruct_leq x0 x1 x2RealsStruct_leq x0 (field1b x0 x1 x3) (field1b x0 x2 x3)
Definition RealsStruct_NRealsStruct_N := λ x0 . Sep (field0 x0) (natOfOrderedField_p (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0))
Known explicit_Field_of_RealsStructexplicit_Field_of_RealsStruct : ∀ x0 . RealsStruct x0explicit_Field (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0)
Theorem explicit_OrderedField_of_RealsStructexplicit_OrderedField_of_RealsStruct : ∀ x0 . RealsStruct x0explicit_OrderedField (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0) (proof)
Param struct_b_b_r_e_estruct_b_b_r_e_e : ιο
Param unpack_b_b_r_e_e_ounpack_b_b_r_e_e_o : ι(ι(ιιι) → (ιιι) → (ιιο) → ιιο) → ο
Definition OrderedFieldStructstruct_b_b_r_e_e_ordered_field := λ x0 . and (struct_b_b_r_e_e x0) (unpack_b_b_r_e_e_o x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 : ι → ι → ο . λ x5 x6 . explicit_OrderedField x1 x5 x6 x2 x3 x4))
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known pack_struct_b_b_r_e_e_Ipack_struct_b_b_r_e_e_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)∀ x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x2 x3 x4x0)∀ x3 : ι → ι → ο . ∀ x4 . x4x0∀ x5 . x5x0struct_b_b_r_e_e (pack_b_b_r_e_e x0 x1 x2 x3 x4 x5)
Known OrderedFieldStruct_unpack_eqOrderedFieldStruct_unpack_eq : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . unpack_b_b_r_e_e_o (pack_b_b_r_e_e x0 x1 x2 x3 x4 x5) (λ x7 . λ x8 x9 : ι → ι → ι . λ x10 : ι → ι → ο . λ x11 x12 . explicit_OrderedField x7 x11 x12 x8 x9 x10) = explicit_OrderedField x0 x4 x5 x1 x2 x3
Theorem RealsStruct_OrderedFieldRealsStruct_OrderedField : ∀ x0 . RealsStruct x0OrderedFieldStruct x0 (proof)
Known tuple_5_1_eqtuple_5_1_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 1 = x1
Known tuple_6_1_eqtuple_6_1_eq : ∀ x0 x1 x2 x3 x4 x5 . ap (lam 6 (λ x7 . If_i (x7 = 0) x0 (If_i (x7 = 1) x1 (If_i (x7 = 2) x2 (If_i (x7 = 3) x3 (If_i (x7 = 4) x4 x5)))))) 1 = x1
Known encode_b_extencode_b_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x1 x3 x4 = x2 x3 x4)encode_b x0 x1 = encode_b x0 x2
Known decode_encode_bdecode_encode_b : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . x2x0∀ x3 . x3x0decode_b (encode_b x0 x1) x2 x3 = x1 x2 x3
Theorem Field_of_RealsStruct_1fField_of_RealsStruct_1f : ∀ x0 . RealsStruct x0(λ x2 . ap (ap (ap (Field_of_RealsStruct x0) 1) x2)) = field1b x0 (proof)
Known tuple_5_2_eqtuple_5_2_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 2 = x2
Known tuple_6_2_eqtuple_6_2_eq : ∀ x0 x1 x2 x3 x4 x5 . ap (lam 6 (λ x7 . If_i (x7 = 0) x0 (If_i (x7 = 1) x1 (If_i (x7 = 2) x2 (If_i (x7 = 3) x3 (If_i (x7 = 4) x4 x5)))))) 2 = x2
Theorem Field_of_RealsStruct_2fField_of_RealsStruct_2f : ∀ x0 . RealsStruct x0(λ x2 . ap (ap (ap (Field_of_RealsStruct x0) 2) x2)) = field2b x0 (proof)
Theorem explicit_Field_of_RealsStruct_2explicit_Field_of_RealsStruct_2 : ∀ x0 . RealsStruct x0explicit_Field (field0 x0) (ap (Field_of_RealsStruct x0) 3) (ap (Field_of_RealsStruct x0) 4) (decode_b (ap (Field_of_RealsStruct x0) 1)) (decode_b (ap (Field_of_RealsStruct x0) 2)) (proof)
Definition FieldField := λ x0 . and (struct_b_b_e_e x0) (unpack_b_b_e_e_o x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 x5 . explicit_Field x1 x4 x5 x2 x3))
Known prop_extprop_ext : ∀ x0 x1 : ο . iff x0 x1x0 = x1
Known iff_symiff_sym : ∀ x0 x1 : ο . iff x0 x1iff x1 x0
Known explicit_Field_repindepexplicit_Field_repindep : ∀ x0 x1 x2 . ∀ x3 x4 x5 x6 : ι → ι → ι . (∀ x7 . x7x0∀ x8 . x8x0x3 x7 x8 = x5 x7 x8)(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8 = x6 x7 x8)iff (explicit_Field x0 x1 x2 x3 x4) (explicit_Field x0 x1 x2 x5 x6)
Theorem Field_Field_of_RealsStructField_Field_of_RealsStruct : ∀ x0 . RealsStruct x0Field (Field_of_RealsStruct x0) (proof)
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Theorem RealsStruct_minus_eqRealsStruct_minus_eq : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0Field_minus (Field_of_RealsStruct x0) x1 = explicit_Field_minus (field0 x0) (ap (Field_of_RealsStruct x0) 3) (ap (Field_of_RealsStruct x0) 4) (decode_b (ap (Field_of_RealsStruct x0) 1)) (decode_b (ap (Field_of_RealsStruct x0) 2)) x1 (proof)
Known explicit_Field_minus_closexplicit_Field_minus_clos : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0explicit_Field_minus x0 x1 x2 x3 x4 x5x0
Theorem RealsStruct_minus_closRealsStruct_minus_clos : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0Field_minus (Field_of_RealsStruct x0) x1field0 x0 (proof)
Known explicit_Field_minus_Rexplicit_Field_minus_R : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0x3 x5 (explicit_Field_minus x0 x1 x2 x3 x4 x5) = x1
Theorem RealsStruct_minus_RRealsStruct_minus_R : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0field1b x0 x1 (Field_minus (Field_of_RealsStruct x0) x1) = field4 x0 (proof)
Theorem RealsStruct_minus_LRealsStruct_minus_L : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0field1b x0 (Field_minus (Field_of_RealsStruct x0) x1) x1 = field4 x0 (proof)
Known explicit_Field_plus_cancelLexplicit_Field_plus_cancelL : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x3 x5 x6 = x3 x5 x7x6 = x7
Theorem RealsStruct_plus_cancelLRealsStruct_plus_cancelL : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field1b x0 x1 x2 = field1b x0 x1 x3x2 = x3 (proof)
Theorem RealsStruct_minus_eq2RealsStruct_minus_eq2 : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0Field_minus (Field_of_RealsStruct x0) x1 = explicit_Field_minus (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) x1 (proof)
Known explicit_Field_plus_cancelRexplicit_Field_plus_cancelR : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x3 x5 x7 = x3 x6 x7x5 = x6
Theorem RealsStruct_plus_cancelRRealsStruct_plus_cancelR : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field1b x0 x1 x3 = field1b x0 x2 x3x1 = x2 (proof)
Theorem RealsStruct_minus_involRealsStruct_minus_invol : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0Field_minus (Field_of_RealsStruct x0) (Field_minus (Field_of_RealsStruct x0) x1) = x1 (proof)
Theorem RealsStruct_minus_one_InRealsStruct_minus_one_In : ∀ x0 . RealsStruct x0Field_minus (Field_of_RealsStruct x0) (RealsStruct_one x0)field0 x0 (proof)
Known explicit_Field_zero_multRexplicit_Field_zero_multR : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0x4 x5 x1 = x1
Theorem RealsStruct_zero_multRRealsStruct_zero_multR : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0field2b x0 x1 (field4 x0) = field4 x0 (proof)
Theorem RealsStruct_zero_multLRealsStruct_zero_multL : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0field2b x0 (field4 x0) x1 = field4 x0 (proof)
Theorem RealsStruct_minus_multRealsStruct_minus_mult : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0Field_minus (Field_of_RealsStruct x0) x1 = field2b x0 (Field_minus (Field_of_RealsStruct x0) (RealsStruct_one x0)) x1 (proof)
Theorem RealsStruct_minus_one_squareRealsStruct_minus_one_square : ∀ x0 . RealsStruct x0field2b x0 (Field_minus (Field_of_RealsStruct x0) (RealsStruct_one x0)) (Field_minus (Field_of_RealsStruct x0) (RealsStruct_one x0)) = RealsStruct_one x0 (proof)
Known explicit_Field_minus_squareexplicit_Field_minus_square : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0x4 (explicit_Field_minus x0 x1 x2 x3 x4 x5) (explicit_Field_minus x0 x1 x2 x3 x4 x5) = x4 x5 x5
Theorem RealsStruct_minus_squareRealsStruct_minus_square : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0field2b x0 (Field_minus (Field_of_RealsStruct x0) x1) (Field_minus (Field_of_RealsStruct x0) x1) = field2b x0 x1 x1 (proof)
Theorem RealsStruct_minus_zeroRealsStruct_minus_zero : ∀ x0 . RealsStruct x0Field_minus (Field_of_RealsStruct x0) (field4 x0) = field4 x0 (proof)
Known explicit_Field_dist_Rexplicit_Field_dist_R : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 (x3 x5 x6) x7 = x3 (x4 x5 x7) (x4 x6 x7)
Theorem RealsStruct_dist_RRealsStruct_dist_R : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field2b x0 (field1b x0 x1 x2) x3 = field1b x0 (field2b x0 x1 x3) (field2b x0 x2 x3) (proof)
Theorem RealsStruct_minus_plus_distRealsStruct_minus_plus_dist : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0Field_minus (Field_of_RealsStruct x0) (field1b x0 x1 x2) = field1b x0 (Field_minus (Field_of_RealsStruct x0) x1) (Field_minus (Field_of_RealsStruct x0) x2) (proof)
Theorem RealsStruct_minus_mult_LRealsStruct_minus_mult_L : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field2b x0 (Field_minus (Field_of_RealsStruct x0) x1) x2 = Field_minus (Field_of_RealsStruct x0) (field2b x0 x1 x2) (proof)
Theorem RealsStruct_minus_mult_RRealsStruct_minus_mult_R : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field2b x0 x1 (Field_minus (Field_of_RealsStruct x0) x2) = Field_minus (Field_of_RealsStruct x0) (field2b x0 x1 x2) (proof)
Known explicit_Field_mult_zero_invexplicit_Field_mult_zero_inv : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6 = x1or (x5 = x1) (x6 = x1)
Theorem RealsStruct_mult_zero_invRealsStruct_mult_zero_inv : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field2b x0 x1 x2 = field4 x0or (x1 = field4 x0) (x2 = field4 x0) (proof)
Theorem RealsStruct_square_zero_invRealsStruct_square_zero_inv : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0field2b x0 x1 x1 = field4 x0x1 = field4 x0 (proof)
Theorem RealsStruct_minus_leqRealsStruct_minus_leq : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0RealsStruct_leq x0 x1 x2RealsStruct_leq x0 (Field_minus (Field_of_RealsStruct x0) x2) (Field_minus (Field_of_RealsStruct x0) x1) (proof)
Known explicit_OrderedField_square_nonnegexplicit_OrderedField_square_nonneg : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5∀ x6 . x6x0x5 x1 (x4 x6 x6)
Theorem RealsStruct_square_nonnegRealsStruct_square_nonneg : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0RealsStruct_leq x0 (field4 x0) (field2b x0 x1 x1) (proof)
Known explicit_OrderedField_sum_squares_nonnegexplicit_OrderedField_sum_squares_nonneg : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5∀ x6 . x6x0∀ x7 . x7x0x5 x1 (x3 (x4 x6 x6) (x4 x7 x7))
Theorem RealsStruct_sum_squares_nonnegRealsStruct_sum_squares_nonneg : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0RealsStruct_leq x0 (field4 x0) (field1b x0 (field2b x0 x1 x1) (field2b x0 x2 x2)) (proof)
Known explicit_OrderedField_sum_nonneg_zero_invexplicit_OrderedField_sum_nonneg_zero_inv : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5∀ x6 . x6x0∀ x7 . x7x0x5 x1 x6x5 x1 x7x3 x6 x7 = x1and (x6 = x1) (x7 = x1)
Theorem RealsStruct_sum_nonneg_zero_invRealsStruct_sum_nonneg_zero_inv : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0RealsStruct_leq x0 (field4 x0) x1RealsStruct_leq x0 (field4 x0) x2field1b x0 x1 x2 = field4 x0and (x1 = field4 x0) (x2 = field4 x0) (proof)
Known explicit_OrderedField_sum_squares_zero_invexplicit_OrderedField_sum_squares_zero_inv : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5∀ x6 . x6x0∀ x7 . x7x0x3 (x4 x6 x6) (x4 x7 x7) = x1and (x6 = x1) (x7 = x1)
Theorem RealsStruct_sum_squares_zero_invRealsStruct_sum_squares_zero_inv : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field1b x0 (field2b x0 x1 x1) (field2b x0 x2 x2) = field4 x0and (x1 = field4 x0) (x2 = field4 x0) (proof)
Known explicit_OrderedField_leq_zero_oneexplicit_OrderedField_leq_zero_one : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5x5 x1 x2
Theorem RealsStruct_leq_zero_oneRealsStruct_leq_zero_one : ∀ x0 . RealsStruct x0RealsStruct_leq x0 (field4 x0) (RealsStruct_one x0) (proof)
Param explicit_Natsexplicit_Nats : ιι(ιι) → ο
Known explicit_Nats_natOfOrderedFieldexplicit_Nats_natOfOrderedField : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5explicit_Nats (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) x1 (λ x6 . x3 x6 x2)
Theorem RealsStruct_natOfOrderedFieldRealsStruct_natOfOrderedField : ∀ x0 . RealsStruct x0explicit_Nats (RealsStruct_N x0) (field4 x0) (λ x1 . field1b x0 x1 (RealsStruct_one x0)) (proof)
Definition RealsStruct_NposRealsStruct_Npos := λ x0 . {x1 ∈ RealsStruct_N x0|x1 = field4 x0∀ x2 : ο . x2}
Known explicit_PosNats_natOfOrderedFieldexplicit_PosNats_natOfOrderedField : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5explicit_Nats {x6 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x6 = x1∀ x7 : ο . x7} x2 (λ x6 . x3 x6 x2)
Theorem RealsStruct_PosNats_natOfOrderedFieldRealsStruct_PosNats_natOfOrderedField : ∀ x0 . RealsStruct x0explicit_Nats (RealsStruct_Npos x0) (RealsStruct_one x0) (λ x1 . field1b x0 x1 (RealsStruct_one x0)) (proof)
Definition RealsStruct_ZRealsStruct_Z := λ x0 . {x1 ∈ field0 x0|or (or (Field_minus (Field_of_RealsStruct x0) x1RealsStruct_Npos x0) (x1 = field4 x0)) (x1RealsStruct_Npos x0)}
Definition 2a63f.. := λ x0 x1 . ∀ x2 : ο . (∀ x3 . and (x3RealsStruct_Z x0) (∀ x4 : ο . (∀ x5 . and (x5RealsStruct_Npos x0) (field2b x0 x5 x1 = x3)x4)x4)x2)x2
Definition RealsStruct_QRealsStruct_Q := λ x0 . Sep (field0 x0) (2a63f.. x0)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param explicit_Nats_one_plusexplicit_Nats_one_plus : ιι(ιι) → ιιι
Param explicit_Nats_one_multexplicit_Nats_one_mult : ιι(ιι) → ιιι
Known explicit_OrderedField_Npos_propsexplicit_OrderedField_Npos_props : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5∀ x6 : ο . ({x7 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x7 = x1∀ x8 : ο . x8}x0explicit_Nats {x7 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x7 = x1∀ x8 : ο . x8} x2 (λ x7 . x3 x7 x2)x2{x7 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x7 = x1∀ x8 : ο . x8}(∀ x7 . x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}x3 x7 x2 = x2∀ x8 : ο . x8)(∀ x7 . x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}∀ x8 : ι → ο . x8 x2(∀ x9 . x9{x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11}x8 (x3 x9 x2))x8 x7)(∀ x7 . x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}∀ x8 . x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10}explicit_Nats_one_plus {x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11} x2 (λ x10 . x3 x10 x2) x7 x8 = x3 x7 x8)(∀ x7 . x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}∀ x8 . x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10}explicit_Nats_one_mult {x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11} x2 (λ x10 . x3 x10 x2) x7 x8 = x4 x7 x8)(∀ x7 . x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}∀ x8 . x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10}x3 x7 x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10})(∀ x7 . x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}∀ x8 . x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10}x4 x7 x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10})x6)x6
Theorem RealsStruct_Npos_propsRealsStruct_Npos_props : ∀ x0 . RealsStruct x0∀ x1 : ο . (RealsStruct_Npos x0field0 x0explicit_Nats (RealsStruct_Npos x0) (RealsStruct_one x0) (λ x2 . field1b x0 x2 (RealsStruct_one x0))RealsStruct_one x0RealsStruct_Npos x0(∀ x2 . x2RealsStruct_Npos x0field1b x0 x2 (RealsStruct_one x0) = RealsStruct_one x0∀ x3 : ο . x3)(∀ x2 . x2RealsStruct_Npos x0∀ x3 : ι → ο . x3 (RealsStruct_one x0)(∀ x4 . x4RealsStruct_Npos x0x3 (field1b x0 x4 (RealsStruct_one x0)))x3 x2)(∀ x2 . x2RealsStruct_Npos x0∀ x3 . x3RealsStruct_Npos x0explicit_Nats_one_plus (RealsStruct_Npos x0) (RealsStruct_one x0) (λ x5 . field1b x0 x5 (RealsStruct_one x0)) x2 x3 = field1b x0 x2 x3)(∀ x2 . x2RealsStruct_Npos x0∀ x3 . x3RealsStruct_Npos x0explicit_Nats_one_mult (RealsStruct_Npos x0) (RealsStruct_one x0) (λ x5 . field1b x0 x5 (RealsStruct_one x0)) x2 x3 = field2b x0 x2 x3)(∀ x2 . x2RealsStruct_Npos x0∀ x3 . x3RealsStruct_Npos x0field1b x0 x2 x3RealsStruct_Npos x0)(∀ x2 . x2RealsStruct_Npos x0∀ x3 . x3RealsStruct_Npos x0field2b x0 x2 x3RealsStruct_Npos x0)x1)x1 (proof)
Theorem RealsStruct_Npos_RRealsStruct_Npos_R : ∀ x0 . RealsStruct x0RealsStruct_Npos x0field0 x0 (proof)
Theorem RealsStruct_one_NposRealsStruct_one_Npos : ∀ x0 . RealsStruct x0RealsStruct_one x0RealsStruct_Npos x0 (proof)
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Theorem 35134.. : ∀ x0 . RealsStruct x0RealsStruct_Z x0 = {x2 ∈ field0 x0|or (or (explicit_Field_minus (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) x2RealsStruct_Npos x0) (x2 = field4 x0)) (x2RealsStruct_Npos x0)} (proof)
Known explicit_OrderedField_Z_propsexplicit_OrderedField_Z_props : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5∀ x6 : ο . ((∀ x7 . x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}explicit_Field_minus x0 x1 x2 x3 x4 x7{x8 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10}) (x8 = x1)) (x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10})})x1{x7 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}) (x7 = x1)) (x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9})}{x7 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x7 = x1∀ x8 : ο . x8}{x7 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}) (x7 = x1)) (x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9})}{x7 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}) (x7 = x1)) (x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9})}x0(∀ x7 . x7{x8 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10}) (x8 = x1)) (x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10})}∀ x8 : ο . (explicit_Field_minus x0 x1 x2 x3 x4 x7{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10}x8)(x7 = x1x8)(x7{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10}x8)x8)x2{x7 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}) (x7 = x1)) (x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9})}explicit_Field_minus x0 x1 x2 x3 x4 x2{x7 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9}) (x7 = x1)) (x7{x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x8 = x1∀ x9 : ο . x9})}(∀ x7 . x7{x8 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10}) (x8 = x1)) (x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10})}explicit_Field_minus x0 x1 x2 x3 x4 x7{x8 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10}) (x8 = x1)) (x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10})})(∀ x7 . x7{x8 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10}) (x8 = x1)) (x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10})}∀ x8 . x8{x9 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x9{x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11}) (x9 = x1)) (x9{x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11})}x3 x7 x8{x9 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x9{x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11}) (x9 = x1)) (x9{x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11})})(∀ x7 . x7{x8 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10}) (x8 = x1)) (x8{x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x9 = x1∀ x10 : ο . x10})}∀ x8 . x8{x9 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x9{x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11}) (x9 = x1)) (x9{x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11})}x4 x7 x8{x9 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x9{x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11}) (x9 = x1)) (x9{x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11})})x6)x6
Theorem RealsStruct_Z_propsRealsStruct_Z_props : ∀ x0 . RealsStruct x0∀ x1 : ο . ((∀ x2 . x2RealsStruct_Npos x0Field_minus (Field_of_RealsStruct x0) x2RealsStruct_Z x0)field4 x0RealsStruct_Z x0RealsStruct_Npos x0RealsStruct_Z x0RealsStruct_Z x0field0 x0(∀ x2 . x2RealsStruct_Z x0∀ x3 : ο . (Field_minus (Field_of_RealsStruct x0) x2RealsStruct_Npos x0x3)(x2 = field4 x0x3)(x2RealsStruct_Npos x0x3)x3)RealsStruct_one x0RealsStruct_Z x0Field_minus (Field_of_RealsStruct x0) (RealsStruct_one x0)RealsStruct_Z x0(∀ x2 . x2RealsStruct_Z x0Field_minus (Field_of_RealsStruct x0) x2RealsStruct_Z x0)(∀ x2 . x2RealsStruct_Z x0∀ x3 . x3RealsStruct_Z x0field1b x0 x2 x3RealsStruct_Z x0)(∀ x2 . x2RealsStruct_Z x0∀ x3 . x3RealsStruct_Z x0field2b x0 x2 x3RealsStruct_Z x0)x1)x1 (proof)
Theorem 0eb6e.. : ∀ x0 . RealsStruct x0RealsStruct_Q x0 = {x2 ∈ field0 x0|∀ x3 : ο . (∀ x4 . and (x4{x5 ∈ field0 x0|or (or (explicit_Field_minus (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) x5RealsStruct_Npos x0) (x5 = field4 x0)) (x5RealsStruct_Npos x0)}) (∀ x5 : ο . (∀ x6 . and (x6RealsStruct_Npos x0) (field2b x0 x6 x2 = x4)x5)x5)x3)x3} (proof)
Theorem RealsStruct_neg_ZRealsStruct_neg_Z : ∀ x0 . RealsStruct x0∀ x1 . x1RealsStruct_Npos x0Field_minus (Field_of_RealsStruct x0) x1RealsStruct_Z x0 (proof)
Theorem RealsStruct_zero_ZRealsStruct_zero_Z : ∀ x0 . RealsStruct x0field4 x0RealsStruct_Z x0 (proof)
Theorem RealsStruct_Npos_ZRealsStruct_Npos_Z : ∀ x0 . RealsStruct x0RealsStruct_Npos x0RealsStruct_Z x0 (proof)
Theorem RealsStruct_Z_RRealsStruct_Z_R : ∀ x0 . RealsStruct x0RealsStruct_Z x0field0 x0 (proof)
Definition explicit_OrderedField_rationalpexplicit_OrderedField_rationalp := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 : ι → ι → ο . λ x6 . ∀ x7 : ο . (∀ x8 . and (x8{x9 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x9{x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11}) (x9 = x1)) (x9{x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11})}) (∀ x9 : ο . (∀ x10 . and (x10{x11 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x11 = x1∀ x12 : ο . x12}) (x4 x10 x6 = x8)x9)x9)x7)x7
Known explicit_OrderedField_Q_propsexplicit_OrderedField_Q_props : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5∀ x6 : ο . (Sep x0 (explicit_OrderedField_rationalp x0 x1 x2 x3 x4 x5)x0(∀ x7 . x7Sep x0 (explicit_OrderedField_rationalp x0 x1 x2 x3 x4 x5)∀ x8 : ο . (x7x0∀ x9 . x9{x10 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x10{x11 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x11 = x1∀ x12 : ο . x12}) (x10 = x1)) (x10{x11 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x11 = x1∀ x12 : ο . x12})}∀ x10 . x10{x11 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x11 = x1∀ x12 : ο . x12}x4 x10 x7 = x9x8)x8)(∀ x7 . x7x0∀ x8 . x8{x9 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x9{x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11}) (x9 = x1)) (x9{x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11})}∀ x9 . x9{x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)|x10 = x1∀ x11 : ο . x11}x4 x9 x7 = x8x7Sep x0 (explicit_OrderedField_rationalp x0 x1 x2 x3 x4 x5))x6)x6
Theorem RealsStruct_Q_propsRealsStruct_Q_props : ∀ x0 . RealsStruct x0∀ x1 : ο . (RealsStruct_Q x0field0 x0(∀ x2 . x2RealsStruct_Q x0∀ x3 : ο . (x2field0 x0∀ x4 . x4RealsStruct_Z x0∀ x5 . x5RealsStruct_Npos x0field2b x0 x5 x2 = x4x3)x3)(∀ x2 . x2field0 x0∀ x3 . x3RealsStruct_Z x0∀ x4 . x4RealsStruct_Npos x0field2b x0 x4 x2 = x3x2RealsStruct_Q x0)x1)x1 (proof)
Theorem RealsStruct_Q_RRealsStruct_Q_R : ∀ x0 . RealsStruct x0RealsStruct_Q x0field0 x0 (proof)
Theorem RealsStruct_Z_QRealsStruct_Z_Q : ∀ x0 . RealsStruct x0RealsStruct_Z x0RealsStruct_Q x0 (proof)