Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrKMW..
/
7cc99..
PUeYf..
/
039c1..
vout
PrKMW..
/
060e7..
0.10 bars
TMY2E..
/
aeb00..
ownership of
485c9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYqe..
/
0680e..
ownership of
d2581..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKcr..
/
0c61c..
ownership of
b00c9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcxa..
/
b003b..
ownership of
03d56..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMadv..
/
9ae4c..
ownership of
d372a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdUH..
/
1797a..
ownership of
b0641..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNie..
/
6fed1..
ownership of
6abad..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPAs..
/
d03aa..
ownership of
576aa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMb13..
/
af8fb..
ownership of
3c91a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNqP..
/
6ebe1..
ownership of
abd5d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMK4v..
/
8321e..
ownership of
aac09..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbqJ..
/
81303..
ownership of
e6514..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWXs..
/
05f89..
ownership of
28af9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMP9p..
/
5d87b..
ownership of
a76e0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFW2..
/
efd1a..
ownership of
7ad54..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSqR..
/
88c4f..
ownership of
2c02f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMN71..
/
ea059..
ownership of
4f57c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMat3..
/
e44c6..
ownership of
4e631..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbMT..
/
c70e3..
ownership of
8729c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSjx..
/
5a676..
ownership of
62a65..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSJw..
/
849d1..
ownership of
f44db..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKZY..
/
d98d9..
ownership of
e32b8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNdG..
/
d5106..
ownership of
74fcf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZCG..
/
224f7..
ownership of
088e7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLmk..
/
0ee01..
ownership of
9cb66..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcs6..
/
4c964..
ownership of
7c0b0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQRW..
/
5bcbf..
ownership of
16763..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLRd..
/
dae7b..
ownership of
41677..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMExo..
/
25e55..
ownership of
615df..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMa1a..
/
de533..
ownership of
11ace..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFgd..
/
fe5db..
ownership of
4f933..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMT1Q..
/
d216e..
ownership of
c08df..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSwP..
/
0e54f..
ownership of
0dfa7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMV4W..
/
3f25c..
ownership of
d5d03..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMG1q..
/
11f32..
ownership of
817bc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMb4B..
/
28692..
ownership of
63633..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUaec..
/
4ee18..
doc published by
PrCmT..
Known
df_msub__df_mvh__df_mpst__df_msr__df_msta__df_mfs__df_mcls__df_mpps__df_mthm__df_m0s__df_msa__df_mwgfs__df_msyn__df_mtree__df_mst__df_msax__df_mufs__df_muv
:
∀ x0 : ο .
(
wceq
cmsub
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
co
(
cfv
(
cv
x1
)
cmrex
)
(
cfv
(
cv
x1
)
cmvar
)
cpm
)
(
λ x2 .
cmpt
(
λ x3 .
cfv
(
cv
x1
)
cmex
)
(
λ x3 .
cop
(
cfv
(
cv
x3
)
c1st
)
(
cfv
(
cfv
(
cv
x3
)
c2nd
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cmrsub
)
)
)
)
)
)
)
⟶
wceq
cmvh
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
cmvar
)
(
λ x2 .
cop
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cmty
)
)
(
cs1
(
cv
x2
)
)
)
)
)
⟶
wceq
cmpst
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cxp
(
cxp
(
crab
(
λ x2 .
wceq
(
ccnv
(
cv
x2
)
)
(
cv
x2
)
)
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
cmdv
)
)
)
(
cin
(
cpw
(
cfv
(
cv
x1
)
cmex
)
)
cfn
)
)
(
cfv
(
cv
x1
)
cmex
)
)
)
⟶
wceq
cmsr
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
cmpst
)
(
λ x2 .
csb
(
cfv
(
cfv
(
cv
x2
)
c1st
)
c2nd
)
(
λ x3 .
csb
(
cfv
(
cv
x2
)
c2nd
)
(
λ x4 .
cotp
(
cin
(
cfv
(
cfv
(
cv
x2
)
c1st
)
c1st
)
(
csb
(
cuni
(
cima
(
cfv
(
cv
x1
)
cmvrs
)
(
cun
(
cv
x3
)
(
csn
(
cv
x4
)
)
)
)
)
(
λ x5 .
cxp
(
cv
x5
)
(
cv
x5
)
)
)
)
(
cv
x3
)
(
cv
x4
)
)
)
)
)
)
⟶
wceq
cmsta
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crn
(
cfv
(
cv
x1
)
cmsr
)
)
)
⟶
wceq
cmfs
(
cab
(
λ x1 .
wa
(
wa
(
wceq
(
cin
(
cfv
(
cv
x1
)
cmcn
)
(
cfv
(
cv
x1
)
cmvar
)
)
c0
)
(
wf
(
cfv
(
cv
x1
)
cmvar
)
(
cfv
(
cv
x1
)
cmtc
)
(
cfv
(
cv
x1
)
cmty
)
)
)
(
wa
(
wss
(
cfv
(
cv
x1
)
cmax
)
(
cfv
(
cv
x1
)
cmsta
)
)
(
wral
(
λ x2 .
wn
(
wcel
(
cima
(
ccnv
(
cfv
(
cv
x1
)
cmty
)
)
(
csn
(
cv
x2
)
)
)
cfn
)
)
(
λ x2 .
cfv
(
cv
x1
)
cmvt
)
)
)
)
)
⟶
wceq
cmcls
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cpw
(
cfv
(
cv
x1
)
cmdv
)
)
(
λ x2 x3 .
cpw
(
cfv
(
cv
x1
)
cmex
)
)
(
λ x2 x3 .
cint
(
cab
(
λ x4 .
wa
(
wss
(
cun
(
cv
x3
)
(
crn
(
cfv
(
cv
x1
)
cmvh
)
)
)
(
cv
x4
)
)
(
∀ x5 x6 x7 .
wcel
(
cotp
(
cv
x5
)
(
cv
x6
)
(
cv
x7
)
)
(
cfv
(
cv
x1
)
cmax
)
⟶
wral
(
λ x8 .
wa
(
wss
(
cima
(
cv
x8
)
(
cun
(
cv
x6
)
(
crn
(
cfv
(
cv
x1
)
cmvh
)
)
)
)
(
cv
x4
)
)
(
∀ x9 x10 .
wbr
(
cv
x9
)
(
cv
x10
)
(
cv
x5
)
⟶
wss
(
cxp
(
cfv
(
cfv
(
cfv
(
cv
x9
)
(
cfv
(
cv
x1
)
cmvh
)
)
(
cv
x8
)
)
(
cfv
(
cv
x1
)
cmvrs
)
)
(
cfv
(
cfv
(
cfv
(
cv
x10
)
(
cfv
(
cv
x1
)
cmvh
)
)
(
cv
x8
)
)
(
cfv
(
cv
x1
)
cmvrs
)
)
)
(
cv
x2
)
)
⟶
wcel
(
cfv
(
cv
x7
)
(
cv
x8
)
)
(
cv
x4
)
)
(
λ x8 .
crn
(
cfv
(
cv
x1
)
cmsub
)
)
)
)
)
)
)
)
⟶
wceq
cmpps
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
coprab
(
λ x2 x3 x4 .
wa
(
wcel
(
cotp
(
cv
x2
)
(
cv
x3
)
(
cv
x4
)
)
(
cfv
(
cv
x1
)
cmpst
)
)
(
wcel
(
cv
x4
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cmcls
)
)
)
)
)
)
⟶
wceq
cmthm
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cima
(
ccnv
(
cfv
(
cv
x1
)
cmsr
)
)
(
cima
(
cfv
(
cv
x1
)
cmsr
)
(
cfv
(
cv
x1
)
cmpps
)
)
)
)
⟶
wceq
cm0s
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cotp
c0
c0
(
cv
x1
)
)
)
⟶
wceq
cmsa
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
w3a
(
wcel
(
cfv
(
cv
x2
)
cm0s
)
(
cfv
(
cv
x1
)
cmax
)
)
(
wcel
(
cfv
(
cv
x2
)
c1st
)
(
cfv
(
cv
x1
)
cmvt
)
)
(
wfun
(
cres
(
ccnv
(
cfv
(
cv
x2
)
c2nd
)
)
(
cfv
(
cv
x1
)
cmvar
)
)
)
)
(
λ x2 .
cfv
(
cv
x1
)
cmex
)
)
)
⟶
wceq
cmwgfs
(
crab
(
λ x1 .
∀ x2 x3 x4 .
wa
(
wcel
(
cotp
(
cv
x2
)
(
cv
x3
)
(
cv
x4
)
)
(
cfv
(
cv
x1
)
cmax
)
)
(
wcel
(
cfv
(
cv
x4
)
c1st
)
(
cfv
(
cv
x1
)
cmvt
)
)
⟶
wrex
(
λ x5 .
wcel
(
cv
x4
)
(
cima
(
cv
x5
)
(
cfv
(
cv
x1
)
cmsa
)
)
)
(
λ x5 .
crn
(
cfv
(
cv
x1
)
cmsub
)
)
)
(
λ x1 .
cmfs
)
)
⟶
wceq
cmsy
(
cslot
c6
)
⟶
wceq
cmtree
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cpw
(
cfv
(
cv
x1
)
cmdv
)
)
(
λ x2 x3 .
cpw
(
cfv
(
cv
x1
)
cmex
)
)
(
λ x2 x3 .
cint
(
cab
(
λ x4 .
w3a
(
wral
(
λ x5 .
wbr
(
cv
x5
)
(
cop
(
cfv
(
cv
x5
)
cm0s
)
c0
)
(
cv
x4
)
)
(
λ x5 .
crn
(
cfv
(
cv
x1
)
cmvh
)
)
)
(
wral
(
λ x5 .
wbr
(
cv
x5
)
(
cop
(
cfv
(
cotp
(
cv
x2
)
(
cv
x3
)
(
cv
x5
)
)
(
cfv
(
cv
x1
)
cmsr
)
)
c0
)
(
cv
x4
)
)
(
λ x5 .
cv
x3
)
)
(
∀ x5 x6 x7 .
wcel
(
cotp
(
cv
x5
)
(
cv
x6
)
(
cv
x7
)
)
(
cfv
(
cv
x1
)
cmax
)
⟶
wral
(
λ x8 .
(
∀ x9 x10 .
wbr
(
cv
x9
)
(
cv
x10
)
(
cv
x5
)
⟶
wss
(
cxp
(
cfv
(
cfv
(
cfv
(
cv
x9
)
(
cfv
(
cv
x1
)
cmvh
)
)
(
cv
x8
)
)
(
cfv
(
cv
x1
)
cmvrs
)
)
(
cfv
(
cfv
(
cfv
(
cv
x10
)
(
cfv
(
cv
x1
)
cmvh
)
)
(
cv
x8
)
)
(
cfv
(
cv
x1
)
cmvrs
)
)
)
(
cv
x2
)
)
⟶
wss
(
cxp
(
csn
(
cfv
(
cv
x7
)
(
cv
x8
)
)
)
(
cixp
(
λ x9 .
cun
(
cv
x6
)
(
cima
(
cfv
(
cv
x1
)
cmvh
)
(
cuni
(
cima
(
cfv
(
cv
x1
)
cmvrs
)
(
cun
(
cv
x6
)
(
csn
(
cv
x7
)
)
)
)
)
)
)
(
λ x9 .
cima
(
cv
x4
)
(
csn
(
cfv
(
cv
x9
)
(
cv
x8
)
)
)
)
)
)
(
cv
x4
)
)
(
λ x8 .
crn
(
cfv
(
cv
x1
)
cmsub
)
)
)
)
)
)
)
)
⟶
wceq
cmst
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cres
(
co
c0
c0
(
cfv
(
cv
x1
)
cmtree
)
)
(
cres
(
cfv
(
cv
x1
)
cmex
)
(
cfv
(
cv
x1
)
cmvt
)
)
)
)
⟶
wceq
cmsax
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
cmsa
)
(
λ x2 .
cima
(
cfv
(
cv
x1
)
cmvh
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cmvrs
)
)
)
)
)
⟶
wceq
cmufs
(
crab
(
λ x1 .
wfun
(
cfv
(
cv
x1
)
cmst
)
)
(
λ x1 .
cmgfs
)
)
⟶
wceq
cmuv
(
cslot
c7
)
⟶
x0
)
⟶
x0
Theorem
df_msub
:
wceq
cmsub
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
co
(
cfv
(
cv
x0
)
cmrex
)
(
cfv
(
cv
x0
)
cmvar
)
cpm
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x0
)
cmex
)
(
λ x2 .
cop
(
cfv
(
cv
x2
)
c1st
)
(
cfv
(
cfv
(
cv
x2
)
c2nd
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cmrsub
)
)
)
)
)
)
)
(proof)
Theorem
df_mvh
:
wceq
cmvh
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
cmvar
)
(
λ x1 .
cop
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cmty
)
)
(
cs1
(
cv
x1
)
)
)
)
)
(proof)
Theorem
df_mpst
:
wceq
cmpst
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cxp
(
cxp
(
crab
(
λ x1 .
wceq
(
ccnv
(
cv
x1
)
)
(
cv
x1
)
)
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
cmdv
)
)
)
(
cin
(
cpw
(
cfv
(
cv
x0
)
cmex
)
)
cfn
)
)
(
cfv
(
cv
x0
)
cmex
)
)
)
(proof)
Theorem
df_msr
:
wceq
cmsr
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
cmpst
)
(
λ x1 .
csb
(
cfv
(
cfv
(
cv
x1
)
c1st
)
c2nd
)
(
λ x2 .
csb
(
cfv
(
cv
x1
)
c2nd
)
(
λ x3 .
cotp
(
cin
(
cfv
(
cfv
(
cv
x1
)
c1st
)
c1st
)
(
csb
(
cuni
(
cima
(
cfv
(
cv
x0
)
cmvrs
)
(
cun
(
cv
x2
)
(
csn
(
cv
x3
)
)
)
)
)
(
λ x4 .
cxp
(
cv
x4
)
(
cv
x4
)
)
)
)
(
cv
x2
)
(
cv
x3
)
)
)
)
)
)
(proof)
Theorem
df_msta
:
wceq
cmsta
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crn
(
cfv
(
cv
x0
)
cmsr
)
)
)
(proof)
Theorem
df_mfs
:
wceq
cmfs
(
cab
(
λ x0 .
wa
(
wa
(
wceq
(
cin
(
cfv
(
cv
x0
)
cmcn
)
(
cfv
(
cv
x0
)
cmvar
)
)
c0
)
(
wf
(
cfv
(
cv
x0
)
cmvar
)
(
cfv
(
cv
x0
)
cmtc
)
(
cfv
(
cv
x0
)
cmty
)
)
)
(
wa
(
wss
(
cfv
(
cv
x0
)
cmax
)
(
cfv
(
cv
x0
)
cmsta
)
)
(
wral
(
λ x1 .
wn
(
wcel
(
cima
(
ccnv
(
cfv
(
cv
x0
)
cmty
)
)
(
csn
(
cv
x1
)
)
)
cfn
)
)
(
λ x1 .
cfv
(
cv
x0
)
cmvt
)
)
)
)
)
(proof)
Theorem
df_mcls
:
wceq
cmcls
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cpw
(
cfv
(
cv
x0
)
cmdv
)
)
(
λ x1 x2 .
cpw
(
cfv
(
cv
x0
)
cmex
)
)
(
λ x1 x2 .
cint
(
cab
(
λ x3 .
wa
(
wss
(
cun
(
cv
x2
)
(
crn
(
cfv
(
cv
x0
)
cmvh
)
)
)
(
cv
x3
)
)
(
∀ x4 x5 x6 .
wcel
(
cotp
(
cv
x4
)
(
cv
x5
)
(
cv
x6
)
)
(
cfv
(
cv
x0
)
cmax
)
⟶
wral
(
λ x7 .
wa
(
wss
(
cima
(
cv
x7
)
(
cun
(
cv
x5
)
(
crn
(
cfv
(
cv
x0
)
cmvh
)
)
)
)
(
cv
x3
)
)
(
∀ x8 x9 .
wbr
(
cv
x8
)
(
cv
x9
)
(
cv
x4
)
⟶
wss
(
cxp
(
cfv
(
cfv
(
cfv
(
cv
x8
)
(
cfv
(
cv
x0
)
cmvh
)
)
(
cv
x7
)
)
(
cfv
(
cv
x0
)
cmvrs
)
)
(
cfv
(
cfv
(
cfv
(
cv
x9
)
(
cfv
(
cv
x0
)
cmvh
)
)
(
cv
x7
)
)
(
cfv
(
cv
x0
)
cmvrs
)
)
)
(
cv
x1
)
)
⟶
wcel
(
cfv
(
cv
x6
)
(
cv
x7
)
)
(
cv
x3
)
)
(
λ x7 .
crn
(
cfv
(
cv
x0
)
cmsub
)
)
)
)
)
)
)
)
(proof)
Theorem
df_mpps
:
wceq
cmpps
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
coprab
(
λ x1 x2 x3 .
wa
(
wcel
(
cotp
(
cv
x1
)
(
cv
x2
)
(
cv
x3
)
)
(
cfv
(
cv
x0
)
cmpst
)
)
(
wcel
(
cv
x3
)
(
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cmcls
)
)
)
)
)
)
(proof)
Theorem
df_mthm
:
wceq
cmthm
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cima
(
ccnv
(
cfv
(
cv
x0
)
cmsr
)
)
(
cima
(
cfv
(
cv
x0
)
cmsr
)
(
cfv
(
cv
x0
)
cmpps
)
)
)
)
(proof)
Theorem
df_m0s
:
wceq
cm0s
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cotp
c0
c0
(
cv
x0
)
)
)
(proof)
Theorem
df_msa
:
wceq
cmsa
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
w3a
(
wcel
(
cfv
(
cv
x1
)
cm0s
)
(
cfv
(
cv
x0
)
cmax
)
)
(
wcel
(
cfv
(
cv
x1
)
c1st
)
(
cfv
(
cv
x0
)
cmvt
)
)
(
wfun
(
cres
(
ccnv
(
cfv
(
cv
x1
)
c2nd
)
)
(
cfv
(
cv
x0
)
cmvar
)
)
)
)
(
λ x1 .
cfv
(
cv
x0
)
cmex
)
)
)
(proof)
Theorem
df_mwgfs
:
wceq
cmwgfs
(
crab
(
λ x0 .
∀ x1 x2 x3 .
wa
(
wcel
(
cotp
(
cv
x1
)
(
cv
x2
)
(
cv
x3
)
)
(
cfv
(
cv
x0
)
cmax
)
)
(
wcel
(
cfv
(
cv
x3
)
c1st
)
(
cfv
(
cv
x0
)
cmvt
)
)
⟶
wrex
(
λ x4 .
wcel
(
cv
x3
)
(
cima
(
cv
x4
)
(
cfv
(
cv
x0
)
cmsa
)
)
)
(
λ x4 .
crn
(
cfv
(
cv
x0
)
cmsub
)
)
)
(
λ x0 .
cmfs
)
)
(proof)
Theorem
df_msyn
:
wceq
cmsy
(
cslot
c6
)
(proof)
Theorem
df_mtree
:
wceq
cmtree
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cpw
(
cfv
(
cv
x0
)
cmdv
)
)
(
λ x1 x2 .
cpw
(
cfv
(
cv
x0
)
cmex
)
)
(
λ x1 x2 .
cint
(
cab
(
λ x3 .
w3a
(
wral
(
λ x4 .
wbr
(
cv
x4
)
(
cop
(
cfv
(
cv
x4
)
cm0s
)
c0
)
(
cv
x3
)
)
(
λ x4 .
crn
(
cfv
(
cv
x0
)
cmvh
)
)
)
(
wral
(
λ x4 .
wbr
(
cv
x4
)
(
cop
(
cfv
(
cotp
(
cv
x1
)
(
cv
x2
)
(
cv
x4
)
)
(
cfv
(
cv
x0
)
cmsr
)
)
c0
)
(
cv
x3
)
)
(
λ x4 .
cv
x2
)
)
(
∀ x4 x5 x6 .
wcel
(
cotp
(
cv
x4
)
(
cv
x5
)
(
cv
x6
)
)
(
cfv
(
cv
x0
)
cmax
)
⟶
wral
(
λ x7 .
(
∀ x8 x9 .
wbr
(
cv
x8
)
(
cv
x9
)
(
cv
x4
)
⟶
wss
(
cxp
(
cfv
(
cfv
(
cfv
(
cv
x8
)
(
cfv
(
cv
x0
)
cmvh
)
)
(
cv
x7
)
)
(
cfv
(
cv
x0
)
cmvrs
)
)
(
cfv
(
cfv
(
cfv
(
cv
x9
)
(
cfv
(
cv
x0
)
cmvh
)
)
(
cv
x7
)
)
(
cfv
(
cv
x0
)
cmvrs
)
)
)
(
cv
x1
)
)
⟶
wss
(
cxp
(
csn
(
cfv
(
cv
x6
)
(
cv
x7
)
)
)
(
cixp
(
λ x8 .
cun
(
cv
x5
)
(
cima
(
cfv
(
cv
x0
)
cmvh
)
(
cuni
(
cima
(
cfv
(
cv
x0
)
cmvrs
)
(
cun
(
cv
x5
)
(
csn
(
cv
x6
)
)
)
)
)
)
)
(
λ x8 .
cima
(
cv
x3
)
(
csn
(
cfv
(
cv
x8
)
(
cv
x7
)
)
)
)
)
)
(
cv
x3
)
)
(
λ x7 .
crn
(
cfv
(
cv
x0
)
cmsub
)
)
)
)
)
)
)
)
(proof)
Theorem
df_mst
:
wceq
cmst
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cres
(
co
c0
c0
(
cfv
(
cv
x0
)
cmtree
)
)
(
cres
(
cfv
(
cv
x0
)
cmex
)
(
cfv
(
cv
x0
)
cmvt
)
)
)
)
(proof)
Theorem
df_msax
:
wceq
cmsax
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
cmsa
)
(
λ x1 .
cima
(
cfv
(
cv
x0
)
cmvh
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cmvrs
)
)
)
)
)
(proof)
Theorem
df_mufs
:
wceq
cmufs
(
crab
(
λ x0 .
wfun
(
cfv
(
cv
x0
)
cmst
)
)
(
λ x0 .
cmgfs
)
)
(proof)
Theorem
df_muv
:
wceq
cmuv
(
cslot
c7
)
(proof)