Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrGur..
/
ad9ce..
PUaJ2..
/
fea06..
vout
PrGur..
/
68b43..
0.10 bars
TMNiq..
/
835a6..
ownership of
d2434..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFse..
/
9d3e9..
ownership of
80a59..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMR1u..
/
ce43a..
ownership of
184d3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPtp..
/
1081a..
ownership of
a2b36..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNu5..
/
fb002..
ownership of
26a73..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWkj..
/
57e82..
ownership of
d900d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHUz..
/
f52c6..
ownership of
7f34a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKet..
/
b7f01..
ownership of
244a7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYNn..
/
38376..
ownership of
f7835..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJuw..
/
d99a0..
ownership of
e4395..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWEh..
/
192a8..
ownership of
715e1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYwm..
/
8a68f..
ownership of
1744d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXTS..
/
2747f..
ownership of
8e0bf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEvX..
/
c7500..
ownership of
a8ba8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRHD..
/
8c3f3..
ownership of
bf9ef..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHzn..
/
f4387..
ownership of
58e2e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQ3s..
/
754fc..
ownership of
06b11..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVsj..
/
29fff..
ownership of
11737..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPZU..
/
e0529..
ownership of
fbe9e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXys..
/
f86d7..
ownership of
96bde..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXdA..
/
8fcd7..
ownership of
542ac..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNqh..
/
957d4..
ownership of
41773..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbER..
/
d893c..
ownership of
48a9c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXTn..
/
da5cd..
ownership of
26d22..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHLU..
/
27560..
ownership of
1bff7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJsW..
/
c5fea..
ownership of
e2990..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbht..
/
1f6d3..
ownership of
f0042..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRut..
/
be973..
ownership of
77a57..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLWe..
/
06d53..
ownership of
31222..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZdC..
/
e2e59..
ownership of
c25ae..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcKe..
/
689e0..
ownership of
d4fe7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMP4d..
/
1dfd3..
ownership of
628cf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGkU..
/
ba9fd..
ownership of
029ed..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcFg..
/
d2b17..
ownership of
9bda2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHpq..
/
23123..
ownership of
86ed8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTJq..
/
a1c00..
ownership of
a928d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUhPT..
/
ee80f..
doc published by
PrCmT..
Known
df_vrgp__df_cmn__df_abl__df_cyg__df_dprd__df_dpj__df_mgp__df_ur__df_srg__df_ring__df_cring__df_oppr__df_dvdsr__df_unit__df_irred__df_invr__df_dvr__df_rprm
:
∀ x0 : ο .
(
wceq
cvrgp
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cv
x1
)
(
λ x2 .
cec
(
cs1
(
cop
(
cv
x2
)
c0
)
)
(
cfv
(
cv
x1
)
cefg
)
)
)
)
⟶
wceq
ccmn
(
crab
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
co
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cplusg
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 .
cmnd
)
)
⟶
wceq
cabl
(
cin
cgrp
ccmn
)
⟶
wceq
ccyg
(
crab
(
λ x1 .
wrex
(
λ x2 .
wceq
(
crn
(
cmpt
(
λ x3 .
cz
)
(
λ x3 .
co
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cmg
)
)
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 .
cgrp
)
)
⟶
wceq
cdprd
(
cmpt2
(
λ x1 x2 .
cgrp
)
(
λ x1 x2 .
cab
(
λ x3 .
wa
(
wf
(
cdm
(
cv
x3
)
)
(
cfv
(
cv
x1
)
csubg
)
(
cv
x3
)
)
(
wral
(
λ x4 .
wa
(
wral
(
λ x5 .
wss
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
ccntz
)
)
)
(
λ x5 .
cdif
(
cdm
(
cv
x3
)
)
(
csn
(
cv
x4
)
)
)
)
(
wceq
(
cin
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cuni
(
cima
(
cv
x3
)
(
cdif
(
cdm
(
cv
x3
)
)
(
csn
(
cv
x4
)
)
)
)
)
(
cfv
(
cfv
(
cv
x1
)
csubg
)
cmrc
)
)
)
(
csn
(
cfv
(
cv
x1
)
c0g
)
)
)
)
(
λ x4 .
cdm
(
cv
x3
)
)
)
)
)
(
λ x1 x2 .
crn
(
cmpt
(
λ x3 .
crab
(
λ x4 .
wbr
(
cv
x4
)
(
cfv
(
cv
x1
)
c0g
)
cfsupp
)
(
λ x4 .
cixp
(
λ x5 .
cdm
(
cv
x2
)
)
(
λ x5 .
cfv
(
cv
x5
)
(
cv
x2
)
)
)
)
(
λ x3 .
co
(
cv
x1
)
(
cv
x3
)
cgsu
)
)
)
)
⟶
wceq
cdpj
(
cmpt2
(
λ x1 x2 .
cgrp
)
(
λ x1 x2 .
cima
(
cdm
cdprd
)
(
csn
(
cv
x1
)
)
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cdm
(
cv
x2
)
)
(
λ x3 .
co
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
co
(
cv
x1
)
(
cres
(
cv
x2
)
(
cdif
(
cdm
(
cv
x2
)
)
(
csn
(
cv
x3
)
)
)
)
cdprd
)
(
cfv
(
cv
x1
)
cpj1
)
)
)
)
⟶
wceq
cmgp
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
(
cv
x1
)
(
cop
(
cfv
cnx
cplusg
)
(
cfv
(
cv
x1
)
cmulr
)
)
csts
)
)
⟶
wceq
cur
(
ccom
c0g
cmgp
)
⟶
wceq
csrg
(
crab
(
λ x1 .
wa
(
wcel
(
cfv
(
cv
x1
)
cmgp
)
cmnd
)
(
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wral
(
λ x6 .
wa
(
wral
(
λ x7 .
wral
(
λ x8 .
wa
(
wceq
(
co
(
cv
x6
)
(
co
(
cv
x7
)
(
cv
x8
)
(
cv
x3
)
)
(
cv
x4
)
)
(
co
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x4
)
)
(
co
(
cv
x6
)
(
cv
x8
)
(
cv
x4
)
)
(
cv
x3
)
)
)
(
wceq
(
co
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x3
)
)
(
cv
x8
)
(
cv
x4
)
)
(
co
(
co
(
cv
x6
)
(
cv
x8
)
(
cv
x4
)
)
(
co
(
cv
x7
)
(
cv
x8
)
(
cv
x4
)
)
(
cv
x3
)
)
)
)
(
λ x8 .
cv
x2
)
)
(
λ x7 .
cv
x2
)
)
(
wa
(
wceq
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x4
)
)
(
cv
x5
)
)
(
wceq
(
co
(
cv
x6
)
(
cv
x5
)
(
cv
x4
)
)
(
cv
x5
)
)
)
)
(
λ x6 .
cv
x2
)
)
(
cfv
(
cv
x1
)
c0g
)
)
(
cfv
(
cv
x1
)
cmulr
)
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
(
λ x1 .
ccmn
)
)
⟶
wceq
crg
(
crab
(
λ x1 .
wa
(
wcel
(
cfv
(
cv
x1
)
cmgp
)
cmnd
)
(
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wa
(
wceq
(
co
(
cv
x5
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x3
)
)
(
cv
x4
)
)
(
co
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x4
)
)
(
co
(
cv
x5
)
(
cv
x7
)
(
cv
x4
)
)
(
cv
x3
)
)
)
(
wceq
(
co
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x3
)
)
(
cv
x7
)
(
cv
x4
)
)
(
co
(
co
(
cv
x5
)
(
cv
x7
)
(
cv
x4
)
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x4
)
)
(
cv
x3
)
)
)
)
(
λ x7 .
cv
x2
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
(
cfv
(
cv
x1
)
cmulr
)
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
(
λ x1 .
cgrp
)
)
⟶
wceq
ccrg
(
crab
(
λ x1 .
wcel
(
cfv
(
cv
x1
)
cmgp
)
ccmn
)
(
λ x1 .
crg
)
)
⟶
wceq
coppr
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
(
cv
x1
)
(
cop
(
cfv
cnx
cmulr
)
(
ctpos
(
cfv
(
cv
x1
)
cmulr
)
)
)
csts
)
)
⟶
wceq
cdsr
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
copab
(
λ x2 x3 .
wa
(
wcel
(
cv
x2
)
(
cfv
(
cv
x1
)
cbs
)
)
(
wrex
(
λ x4 .
wceq
(
co
(
cv
x4
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cmulr
)
)
(
cv
x3
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
)
)
)
⟶
wceq
cui
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cima
(
ccnv
(
cin
(
cfv
(
cv
x1
)
cdsr
)
(
cfv
(
cfv
(
cv
x1
)
coppr
)
cdsr
)
)
)
(
csn
(
cfv
(
cv
x1
)
cur
)
)
)
)
⟶
wceq
cir
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
csb
(
cdif
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x1
)
cui
)
)
(
λ x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wne
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
cmulr
)
)
(
cv
x3
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x2
)
)
)
)
⟶
wceq
cinvr
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cfv
(
co
(
cfv
(
cv
x1
)
cmgp
)
(
cfv
(
cv
x1
)
cui
)
cress
)
cminusg
)
)
⟶
wceq
cdvr
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cui
)
(
λ x2 x3 .
co
(
cv
x2
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
cinvr
)
)
(
cfv
(
cv
x1
)
cmulr
)
)
)
)
⟶
wceq
crpm
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
csb
(
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wsbc
(
λ x6 .
wbr
(
cv
x3
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
cmulr
)
)
(
cv
x6
)
⟶
wo
(
wbr
(
cv
x3
)
(
cv
x4
)
(
cv
x6
)
)
(
wbr
(
cv
x3
)
(
cv
x5
)
(
cv
x6
)
)
)
(
cfv
(
cv
x1
)
cdsr
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cdif
(
cv
x2
)
(
cun
(
cfv
(
cv
x1
)
cui
)
(
csn
(
cfv
(
cv
x1
)
c0g
)
)
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_vrgp
:
wceq
cvrgp
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cv
x0
)
(
λ x1 .
cec
(
cs1
(
cop
(
cv
x1
)
c0
)
)
(
cfv
(
cv
x0
)
cefg
)
)
)
)
(proof)
Theorem
df_cmn
:
wceq
ccmn
(
crab
(
λ x0 .
wral
(
λ x1 .
wral
(
λ x2 .
wceq
(
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
co
(
cv
x2
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cplusg
)
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 .
cmnd
)
)
(proof)
Theorem
df_abl
:
wceq
cabl
(
cin
cgrp
ccmn
)
(proof)
Theorem
df_cyg
:
wceq
ccyg
(
crab
(
λ x0 .
wrex
(
λ x1 .
wceq
(
crn
(
cmpt
(
λ x2 .
cz
)
(
λ x2 .
co
(
cv
x2
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cmg
)
)
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 .
cgrp
)
)
(proof)
Theorem
df_dprd
:
wceq
cdprd
(
cmpt2
(
λ x0 x1 .
cgrp
)
(
λ x0 x1 .
cab
(
λ x2 .
wa
(
wf
(
cdm
(
cv
x2
)
)
(
cfv
(
cv
x0
)
csubg
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wa
(
wral
(
λ x4 .
wss
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x0
)
ccntz
)
)
)
(
λ x4 .
cdif
(
cdm
(
cv
x2
)
)
(
csn
(
cv
x3
)
)
)
)
(
wceq
(
cin
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cuni
(
cima
(
cv
x2
)
(
cdif
(
cdm
(
cv
x2
)
)
(
csn
(
cv
x3
)
)
)
)
)
(
cfv
(
cfv
(
cv
x0
)
csubg
)
cmrc
)
)
)
(
csn
(
cfv
(
cv
x0
)
c0g
)
)
)
)
(
λ x3 .
cdm
(
cv
x2
)
)
)
)
)
(
λ x0 x1 .
crn
(
cmpt
(
λ x2 .
crab
(
λ x3 .
wbr
(
cv
x3
)
(
cfv
(
cv
x0
)
c0g
)
cfsupp
)
(
λ x3 .
cixp
(
λ x4 .
cdm
(
cv
x1
)
)
(
λ x4 .
cfv
(
cv
x4
)
(
cv
x1
)
)
)
)
(
λ x2 .
co
(
cv
x0
)
(
cv
x2
)
cgsu
)
)
)
)
(proof)
Theorem
df_dpj
:
wceq
cdpj
(
cmpt2
(
λ x0 x1 .
cgrp
)
(
λ x0 x1 .
cima
(
cdm
cdprd
)
(
csn
(
cv
x0
)
)
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cdm
(
cv
x1
)
)
(
λ x2 .
co
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
co
(
cv
x0
)
(
cres
(
cv
x1
)
(
cdif
(
cdm
(
cv
x1
)
)
(
csn
(
cv
x2
)
)
)
)
cdprd
)
(
cfv
(
cv
x0
)
cpj1
)
)
)
)
(proof)
Theorem
df_mgp
:
wceq
cmgp
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
(
cv
x0
)
(
cop
(
cfv
cnx
cplusg
)
(
cfv
(
cv
x0
)
cmulr
)
)
csts
)
)
(proof)
Theorem
df_ur
:
wceq
cur
(
ccom
c0g
cmgp
)
(proof)
Theorem
df_srg
:
wceq
csrg
(
crab
(
λ x0 .
wa
(
wcel
(
cfv
(
cv
x0
)
cmgp
)
cmnd
)
(
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wral
(
λ x5 .
wa
(
wral
(
λ x6 .
wral
(
λ x7 .
wa
(
wceq
(
co
(
cv
x5
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x2
)
)
(
cv
x3
)
)
(
co
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x3
)
)
(
co
(
cv
x5
)
(
cv
x7
)
(
cv
x3
)
)
(
cv
x2
)
)
)
(
wceq
(
co
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x2
)
)
(
cv
x7
)
(
cv
x3
)
)
(
co
(
co
(
cv
x5
)
(
cv
x7
)
(
cv
x3
)
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x3
)
)
(
cv
x2
)
)
)
)
(
λ x7 .
cv
x1
)
)
(
λ x6 .
cv
x1
)
)
(
wa
(
wceq
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
(
cv
x4
)
)
(
wceq
(
co
(
cv
x5
)
(
cv
x4
)
(
cv
x3
)
)
(
cv
x4
)
)
)
)
(
λ x5 .
cv
x1
)
)
(
cfv
(
cv
x0
)
c0g
)
)
(
cfv
(
cv
x0
)
cmulr
)
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cfv
(
cv
x0
)
cbs
)
)
)
(
λ x0 .
ccmn
)
)
(proof)
Theorem
df_ring
:
wceq
crg
(
crab
(
λ x0 .
wa
(
wcel
(
cfv
(
cv
x0
)
cmgp
)
cmnd
)
(
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wa
(
wceq
(
co
(
cv
x4
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x2
)
)
(
cv
x3
)
)
(
co
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
(
co
(
cv
x4
)
(
cv
x6
)
(
cv
x3
)
)
(
cv
x2
)
)
)
(
wceq
(
co
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x2
)
)
(
cv
x6
)
(
cv
x3
)
)
(
co
(
co
(
cv
x4
)
(
cv
x6
)
(
cv
x3
)
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x3
)
)
(
cv
x2
)
)
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
(
cfv
(
cv
x0
)
cmulr
)
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cfv
(
cv
x0
)
cbs
)
)
)
(
λ x0 .
cgrp
)
)
(proof)
Theorem
df_cring
:
wceq
ccrg
(
crab
(
λ x0 .
wcel
(
cfv
(
cv
x0
)
cmgp
)
ccmn
)
(
λ x0 .
crg
)
)
(proof)
Theorem
df_oppr
:
wceq
coppr
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
(
cv
x0
)
(
cop
(
cfv
cnx
cmulr
)
(
ctpos
(
cfv
(
cv
x0
)
cmulr
)
)
)
csts
)
)
(proof)
Theorem
df_dvdsr
:
wceq
cdsr
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
copab
(
λ x1 x2 .
wa
(
wcel
(
cv
x1
)
(
cfv
(
cv
x0
)
cbs
)
)
(
wrex
(
λ x3 .
wceq
(
co
(
cv
x3
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cmulr
)
)
(
cv
x2
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
)
)
)
(proof)
Theorem
df_unit
:
wceq
cui
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cima
(
ccnv
(
cin
(
cfv
(
cv
x0
)
cdsr
)
(
cfv
(
cfv
(
cv
x0
)
coppr
)
cdsr
)
)
)
(
csn
(
cfv
(
cv
x0
)
cur
)
)
)
)
(proof)
Theorem
df_irred
:
wceq
cir
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
csb
(
cdif
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x0
)
cui
)
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wne
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
cmulr
)
)
(
cv
x2
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x1
)
)
)
)
(proof)
Theorem
df_invr
:
wceq
cinvr
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cfv
(
co
(
cfv
(
cv
x0
)
cmgp
)
(
cfv
(
cv
x0
)
cui
)
cress
)
cminusg
)
)
(proof)
Theorem
df_dvr
:
wceq
cdvr
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 x2 .
cfv
(
cv
x0
)
cui
)
(
λ x1 x2 .
co
(
cv
x1
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x0
)
cinvr
)
)
(
cfv
(
cv
x0
)
cmulr
)
)
)
)
(proof)
Theorem
df_rprm
:
wceq
crpm
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
csb
(
cfv
(
cv
x0
)
cbs
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wsbc
(
λ x5 .
wbr
(
cv
x2
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
cmulr
)
)
(
cv
x5
)
⟶
wo
(
wbr
(
cv
x2
)
(
cv
x3
)
(
cv
x5
)
)
(
wbr
(
cv
x2
)
(
cv
x4
)
(
cv
x5
)
)
)
(
cfv
(
cv
x0
)
cdsr
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cdif
(
cv
x1
)
(
cun
(
cfv
(
cv
x0
)
cui
)
(
csn
(
cfv
(
cv
x0
)
c0g
)
)
)
)
)
)
)
(proof)