Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr8UU..
/
87231..
PUa5s..
/
920a5..
vout
Pr8UU..
/
342f6..
0.00 bars
TMTRU..
/
df55f..
ownership of
424a2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMK9e..
/
f7a63..
ownership of
c7fbc..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcSE..
/
c3355..
ownership of
b4fdd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUXt..
/
8c086..
ownership of
aa19a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PULBv..
/
be094..
doc published by
PrGxv..
Param
explicit_Field
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Param
explicit_Field_minus
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
Known
2f9e6..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 : ο .
(
(
∀ x6 .
prim1
x6
x0
⟶
prim1
(
explicit_Field_minus
x0
x1
x2
x3
x4
x6
)
x0
)
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x1
=
x1
⟶
(
∀ x6 .
prim1
x6
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x6
)
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x6
)
x6
=
x1
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x3
x6
(
explicit_Field_minus
x0
x1
x2
x3
x4
x6
)
=
x1
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
(
x3
x6
x7
)
x8
=
x3
(
x4
x6
x8
)
(
x4
x7
x8
)
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
(
x3
x6
x7
)
=
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x6
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
)
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x6
)
x7
=
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x6
x7
)
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x6
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
)
=
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x6
x7
)
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x4
x1
x6
=
x1
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x4
x6
x1
=
x1
)
⟶
prim1
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
x0
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
prim1
(
x4
x6
(
x4
x7
x8
)
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x3
(
x3
x6
x7
)
(
x3
x8
x9
)
=
x3
(
x3
x6
x9
)
(
x3
x7
x8
)
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x3
(
x3
x6
x7
)
(
x3
x8
x9
)
=
x3
(
x3
x6
x8
)
(
x3
x7
x9
)
)
⟶
x5
)
⟶
x5
Param
62ee1..
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Param
and
:
ο
→
ο
→
ο
Param
3b429..
:
ι
→
(
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
CT2
ι
Param
True
:
ο
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Known
6e27d..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
62ee1..
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x6
x7
x8
=
x6
x9
x10
⟶
and
(
x7
=
x9
)
(
x8
=
x10
)
)
⟶
∀ x7 : ο .
(
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim1
(
x6
x8
x9
)
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x8
=
x6
x10
x11
⟶
x9
(
x6
x10
x11
)
)
⟶
x9
x8
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x6
x8
x9
=
x6
x11
x12
)
)
)
=
x8
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
=
x9
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
prim1
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
x0
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
prim1
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
x0
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
x8
=
x6
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
prim1
(
x6
x8
x1
)
(
1216a..
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
(
λ x9 .
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
x1
=
x9
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
=
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
=
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
⟶
x8
=
x9
)
⟶
prim1
(
x6
x1
x1
)
(
3b429..
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
)
⟶
prim1
(
x6
x2
x1
)
(
3b429..
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
(
x3
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x10
x11
=
x6
x13
x14
)
)
)
)
)
(
x3
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x8
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x10
x11
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
=
x6
(
x3
x8
x10
)
(
x3
x9
x11
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
x6
(
x3
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
(
x3
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
=
x6
(
x3
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
(
x3
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim1
(
x6
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x6
(
x3
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
)
(
x3
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
x8
=
x6
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
x15
)
)
)
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
x9
=
x6
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
x15
)
)
)
)
=
x6
x11
x12
)
)
)
=
x3
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x6
(
x3
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
)
(
x3
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
(
x3
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
)
(
x3
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
x8
=
x6
(
prim0
(
λ x19 .
and
(
prim1
x19
x0
)
(
∃ x20 .
and
(
prim1
x20
x0
)
(
x8
=
x6
x19
x20
)
)
)
)
x17
)
)
)
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
x9
=
x6
(
prim0
(
λ x19 .
and
(
prim1
x19
x0
)
(
∃ x20 .
and
(
prim1
x20
x0
)
(
x9
=
x6
x19
x20
)
)
)
)
x17
)
)
)
)
=
x6
x13
x14
)
)
)
)
x11
)
)
=
x3
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x10
x11
=
x6
x13
x14
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x8
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x10
x11
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x10
x11
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x8
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x10
x11
=
x6
x13
x14
)
)
)
)
)
)
=
x6
(
x3
(
x4
x8
x10
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x9
x11
)
)
)
(
x3
(
x4
x8
x11
)
(
x4
x9
x10
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
x6
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
)
=
x6
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim1
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
)
x0
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim1
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
)
x0
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim1
(
x6
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
)
)
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
x8
=
x6
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
x15
)
)
)
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
x9
=
x6
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
x15
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
x9
=
x6
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
x15
)
)
)
)
(
x4
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
x8
=
x6
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
x15
)
)
)
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
)
)
=
x6
x11
x12
)
)
)
=
x3
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
3b429..
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
∀ x9 .
prim1
x9
(
3b429..
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
)
)
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
x8
=
x6
(
prim0
(
λ x19 .
and
(
prim1
x19
x0
)
(
∃ x20 .
and
(
prim1
x20
x0
)
(
x8
=
x6
x19
x20
)
)
)
)
x17
)
)
)
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
x9
=
x6
(
prim0
(
λ x19 .
and
(
prim1
x19
x0
)
(
∃ x20 .
and
(
prim1
x20
x0
)
(
x9
=
x6
x19
x20
)
)
)
)
x17
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
x9
=
x6
(
prim0
(
λ x19 .
and
(
prim1
x19
x0
)
(
∃ x20 .
and
(
prim1
x20
x0
)
(
x9
=
x6
x19
x20
)
)
)
)
x17
)
)
)
)
(
x4
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
x8
=
x6
(
prim0
(
λ x19 .
and
(
prim1
x19
x0
)
(
∃ x20 .
and
(
prim1
x20
x0
)
(
x8
=
x6
x19
x20
)
)
)
)
x17
)
)
)
(
prim0
(
λ x17 .
and
(
prim1
x17
x0
)
(
∃ x18 .
and
(
prim1
x18
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
)
)
=
x6
x13
x14
)
)
)
)
x11
)
)
=
x3
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
)
⟶
x7
)
⟶
x7
Known
b6a82..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
∀ x7 .
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
x8
x9
=
x6
x10
x11
⟶
and
(
x8
=
x10
)
(
x9
=
x11
)
)
⟶
62ee1..
x0
x1
x2
x3
x4
x5
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x3
x8
x9
=
x3
x9
x8
)
⟶
prim1
x1
x0
⟶
(
∀ x8 .
prim1
x8
x0
⟶
x3
x1
x8
=
x8
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim1
(
x4
x8
x9
)
x0
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x6
x8
x9
=
x6
x11
x12
)
)
)
=
x8
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
prim1
(
x6
x8
x1
)
(
1216a..
x7
(
λ x9 .
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
x1
=
x9
)
)
)
⟶
(
∀ x8 .
prim1
x8
x7
⟶
prim1
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
x0
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
(
x3
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x10
x11
=
x6
x13
x14
)
)
)
)
)
(
x3
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x8
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x10
x11
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
=
x6
(
x3
x8
x10
)
(
x3
x9
x11
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x10
x11
=
x6
x13
x14
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x8
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x10
x11
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x10
x11
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x8
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x10
x11
=
x6
x13
x14
)
)
)
)
)
)
=
x6
(
x3
(
x4
x8
x10
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x9
x11
)
)
)
(
x3
(
x4
x8
x11
)
(
x4
x9
x10
)
)
)
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x1
=
x1
⟶
(
∀ x8 .
prim1
x8
x0
⟶
x4
x1
x8
=
x1
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
x4
x8
x1
=
x1
)
⟶
62ee1..
(
1216a..
x7
(
λ x8 .
x6
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
x1
=
x8
)
)
(
x6
x1
x1
)
(
x6
x2
x1
)
(
λ x8 x9 .
x6
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
(
λ x8 x9 .
x6
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
)
)
(
λ x8 x9 .
x5
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
Param
11fac..
:
ι
→
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Param
Subq
:
ι
→
ι
→
ο
Known
65b0c..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
∀ x7 .
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
x8
x9
=
x6
x10
x11
⟶
and
(
x8
=
x10
)
(
x9
=
x11
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim1
(
x3
x8
x9
)
x0
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x3
x8
x9
=
x3
x9
x8
)
⟶
prim1
x1
x0
⟶
(
∀ x8 .
prim1
x8
x0
⟶
x3
x1
x8
=
x8
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim1
(
x4
x8
x9
)
x0
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x4
x8
x9
=
x4
x9
x8
)
⟶
prim1
x2
x0
⟶
(
∀ x8 .
prim1
x8
x0
⟶
x4
x2
x8
=
x8
)
⟶
prim1
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
x0
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim1
(
x6
x8
x9
)
x7
)
⟶
(
∀ x8 .
prim1
x8
x7
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x8
=
x6
x10
x11
⟶
x9
(
x6
x10
x11
)
)
⟶
x9
x8
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x6
x8
x9
=
x6
x11
x12
)
)
)
=
x8
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
=
x9
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
prim1
(
x6
x8
x1
)
(
1216a..
x7
(
λ x9 .
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
x1
=
x9
)
)
)
⟶
(
∀ x8 .
prim1
x8
x7
⟶
prim1
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
x0
)
⟶
(
∀ x8 .
prim1
x8
x7
⟶
prim1
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
x0
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
(
x3
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x10
x11
=
x6
x13
x14
)
)
)
)
)
(
x3
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x8
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x10
x11
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
=
x6
(
x3
x8
x10
)
(
x3
x9
x11
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x10
x11
=
x6
x13
x14
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x8
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x10
x11
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x10
x11
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x8
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x10
x11
=
x6
x13
x14
)
)
)
)
)
)
=
x6
(
x3
(
x4
x8
x10
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x9
x11
)
)
)
(
x3
(
x4
x8
x11
)
(
x4
x9
x10
)
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
)
x8
=
x1
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
x3
x8
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
)
=
x1
)
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x1
=
x1
⟶
(
∀ x8 .
prim1
x8
x0
⟶
x4
x1
x8
=
x1
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
x4
x8
x1
=
x1
)
⟶
explicit_Field
x7
(
x6
x1
x1
)
(
x6
x2
x1
)
(
λ x8 x9 .
x6
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
(
λ x8 x9 .
x6
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
)
)
⟶
62ee1..
(
1216a..
x7
(
λ x8 .
x6
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
x1
=
x8
)
)
(
x6
x1
x1
)
(
x6
x2
x1
)
(
λ x8 x9 .
x6
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
(
λ x8 x9 .
x6
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
)
)
(
λ x8 x9 .
x5
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
⟶
and
(
11fac..
x7
(
λ x8 .
x6
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
x1
)
(
λ x8 .
x6
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
x1
)
(
x6
x1
x1
)
(
x6
x2
x1
)
(
x6
x1
x2
)
(
λ x8 x9 .
x6
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
(
λ x8 x9 .
x6
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
)
)
)
(
(
∀ x8 .
prim1
x8
x0
⟶
x6
x8
x1
=
x8
)
⟶
and
(
and
(
and
(
and
(
and
(
Subq
x0
x7
)
(
∀ x8 .
prim1
x8
x0
⟶
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
=
x8
)
)
(
x6
x1
x1
=
x1
)
)
(
x6
x2
x1
=
x2
)
)
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x6
(
x3
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
(
x3
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
=
x3
x8
x9
)
)
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x6
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
(
x4
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
)
=
x4
x8
x9
)
)
Param
explicit_OrderedField
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Param
lt
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ο
Param
natOfOrderedField_p
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ι
→
ο
Param
b5c9f..
:
ι
→
ι
→
ι
Param
f482f..
:
ι
→
ι
→
ι
Known
f2fa8..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 : ο .
(
62ee1..
x0
x1
x2
x3
x4
x5
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
lt
x0
x1
x2
x3
x4
x5
x1
x7
⟶
x5
x1
x8
⟶
∃ x9 .
and
(
prim1
x9
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
)
(
x5
x8
(
x4
x9
x7
)
)
)
⟶
(
∀ x7 .
prim1
x7
(
b5c9f..
x0
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
)
⟶
∀ x8 .
prim1
x8
(
b5c9f..
x0
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
)
⟶
(
∀ x9 .
prim1
x9
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
and
(
and
(
x5
(
f482f..
x7
x9
)
(
f482f..
x8
x9
)
)
(
x5
(
f482f..
x7
x9
)
(
f482f..
x7
(
x3
x9
x2
)
)
)
)
(
x5
(
f482f..
x8
(
x3
x9
x2
)
)
(
f482f..
x8
x9
)
)
)
⟶
∃ x9 .
and
(
prim1
x9
x0
)
(
∀ x11 .
prim1
x11
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
and
(
x5
(
f482f..
x7
x11
)
x9
)
(
x5
x9
(
f482f..
x8
x11
)
)
)
)
⟶
x6
)
⟶
62ee1..
x0
x1
x2
x3
x4
x5
⟶
x6
Param
iff
:
ο
→
ο
→
ο
Param
or
:
ο
→
ο
→
ο
Known
explicit_OrderedField_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 : ο .
(
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x5
x7
x8
⟶
x5
x8
x9
⟶
x5
x7
x9
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
iff
(
and
(
x5
x7
x8
)
(
x5
x8
x7
)
)
(
x7
=
x8
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
or
(
x5
x7
x8
)
(
x5
x8
x7
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x5
x7
x8
⟶
x5
(
x3
x7
x9
)
(
x3
x8
x9
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x5
x1
x7
⟶
x5
x1
x8
⟶
x5
x1
(
x4
x7
x8
)
)
⟶
x6
)
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
x6
Known
explicit_Field_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x3
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
prim1
x1
x0
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∃ x7 .
and
(
prim1
x7
x0
)
(
x3
x6
x7
=
x1
)
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x4
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
prim1
x2
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
(
x6
=
x1
⟶
∀ x7 : ο .
x7
)
⟶
∃ x7 .
and
(
prim1
x7
x0
)
(
x4
x6
x7
=
x2
)
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
x5
)
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
x5
Theorem
b4fdd..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
62ee1..
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x6
x7
x8
=
x6
x9
x10
⟶
and
(
x7
=
x9
)
(
x8
=
x10
)
)
⟶
62ee1..
(
1216a..
(
3b429..
x0
(
λ x7 .
x0
)
(
λ x7 x8 .
True
)
x6
)
(
λ x7 .
x6
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
x1
=
x7
)
)
(
x6
x1
x1
)
(
x6
x2
x1
)
(
λ x7 x8 .
x6
(
x3
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
(
x3
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
)
(
λ x7 x8 .
x6
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
)
)
(
λ x7 x8 .
x5
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
...
Theorem
424a2..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
62ee1..
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x6
x7
x8
=
x6
x9
x10
⟶
and
(
x7
=
x9
)
(
x8
=
x10
)
)
⟶
explicit_Field
(
3b429..
x0
(
λ x7 .
x0
)
(
λ x7 x8 .
True
)
x6
)
(
x6
x1
x1
)
(
x6
x2
x1
)
(
λ x7 x8 .
x6
(
x3
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
(
x3
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
)
(
λ x7 x8 .
x6
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
)
)
⟶
and
(
11fac..
(
3b429..
x0
(
λ x7 .
x0
)
(
λ x7 x8 .
True
)
x6
)
(
λ x7 .
x6
(
prim0
(
λ x8 .
and
(
prim1
x8
x0
)
(
∃ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
x8
x9
)
)
)
)
x1
)
(
λ x7 .
x6
(
prim0
(
λ x8 .
and
(
prim1
x8
x0
)
(
x7
=
x6
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x7
=
x6
x10
x11
)
)
)
)
x8
)
)
)
x1
)
(
x6
x1
x1
)
(
x6
x2
x1
)
(
x6
x1
x2
)
(
λ x7 x8 .
x6
(
x3
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
(
x3
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
)
(
λ x7 x8 .
x6
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
(
x4
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
)
)
)
(
(
∀ x7 .
prim1
x7
x0
⟶
x6
x7
x1
=
x7
)
⟶
and
(
and
(
and
(
and
(
and
(
Subq
x0
(
3b429..
x0
(
λ x7 .
x0
)
(
λ x7 x8 .
True
)
x6
)
)
(
∀ x7 .
prim1
x7
x0
⟶
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
x9
x10
)
)
)
=
x7
)
)
(
x6
x1
x1
=
x1
)
)
(
x6
x2
x1
=
x2
)
)
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x6
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x7
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
)
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x7
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
=
x3
x7
x8
)
)
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x6
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x7
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x7
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x7
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x7
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
)
)
=
x4
x7
x8
)
)
...