Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrDsC..
/
e7d2e..
PUPRU..
/
3d092..
vout
PrDsC..
/
d68d6..
12.39 bars
TMMqA..
/
99317..
ownership of
e443a..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMP6A..
/
6e5c1..
ownership of
43013..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMaF9..
/
d3437..
ownership of
42863..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMM8s..
/
571c5..
ownership of
8129e..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMRKZ..
/
a2a88..
ownership of
61ba2..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMStK..
/
71915..
ownership of
e1ac5..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMSKh..
/
47f13..
ownership of
994bf..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMTHj..
/
9e03a..
ownership of
b5511..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMXAD..
/
1d84f..
ownership of
e6d9e..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMN1D..
/
18c74..
ownership of
c5cb8..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMQo5..
/
bd232..
ownership of
9347c..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMRUT..
/
a479c..
ownership of
b8cc5..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMPLb..
/
369da..
ownership of
c31a3..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMVE2..
/
e8cbc..
ownership of
25b39..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMKDG..
/
c4272..
ownership of
1dd10..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMYRK..
/
80173..
ownership of
877c0..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMJpR..
/
4dda1..
ownership of
01619..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMRRY..
/
54087..
ownership of
cffd5..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMLcU..
/
6ecb0..
ownership of
760b6..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMU8z..
/
4b5e0..
ownership of
1790b..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMHTn..
/
9c2d6..
ownership of
05bdf..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMEkH..
/
8f202..
ownership of
5c6bb..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMdMx..
/
08b80..
ownership of
64746..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMd1m..
/
3b910..
ownership of
ba0d7..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMFiz..
/
82d63..
ownership of
183c5..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMVhy..
/
f474a..
ownership of
d5b8a..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMcQn..
/
8ceb8..
ownership of
6bacd..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMW2M..
/
f6846..
ownership of
b94c8..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMWD8..
/
981ea..
ownership of
0e909..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMNtK..
/
0b109..
ownership of
9d7d8..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMHtD..
/
407fa..
ownership of
57959..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMQHY..
/
157d3..
ownership of
eaaab..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMN1M..
/
95d90..
ownership of
8633f..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMJqf..
/
bae0c..
ownership of
d305e..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMca1..
/
f12a9..
ownership of
ad386..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMLPu..
/
2591f..
ownership of
c5474..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMPHP..
/
34c29..
ownership of
4ce24..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMFug..
/
e52ef..
ownership of
f0823..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMLmi..
/
6b950..
ownership of
1a38b..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMTFK..
/
32eb5..
ownership of
5afb9..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMEkk..
/
81ff1..
ownership of
e4b9e..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMQz9..
/
f9524..
ownership of
14622..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMKFa..
/
47b23..
ownership of
aa3f3..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMQtF..
/
4327f..
ownership of
4120b..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMTXU..
/
751ce..
ownership of
1e9a4..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMYvv..
/
c4334..
ownership of
6482b..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMH6n..
/
35ba6..
ownership of
40a7b..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMK9P..
/
8d8c0..
ownership of
f057e..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMKt6..
/
80153..
ownership of
68b43..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMUjy..
/
4383a..
ownership of
7cb99..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMU73..
/
13c44..
ownership of
e219d..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMWJ8..
/
32e69..
ownership of
bd860..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMPPZ..
/
6fcdc..
ownership of
e4946..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMczR..
/
cadd9..
ownership of
9e7ec..
as prop with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMJ3u..
/
5f2e9..
ownership of
127dd..
as obj with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMcqe..
/
695b2..
ownership of
694a8..
as obj with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMZnD..
/
b104d..
ownership of
0941b..
as obj with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMRAk..
/
e242c..
ownership of
005fe..
as obj with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMFor..
/
e24ca..
ownership of
28b0a..
as obj with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
TMaom..
/
c8278..
ownership of
1769d..
as obj with payaddr
PrKYB..
rights free controlledby
PrKYB..
upto 0
PUMZR..
/
7a79a..
doc published by
PrKYB..
Definition
28b0a..
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
(
x1
x2
x3
)
x4
=
x1
x2
(
x1
x3
x4
)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
0941b..
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
and
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
(
x1
x2
x3
)
x4
=
x1
x2
(
x1
x3
x4
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
x0
)
(
∀ x4 .
x4
∈
x0
⟶
and
(
x1
x4
x3
=
x4
)
(
x1
x3
x4
=
x4
)
)
⟶
x2
)
⟶
x2
)
Definition
explicit_Group
explicit_Group
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
and
(
and
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
x0
)
(
and
(
∀ x4 .
x4
∈
x0
⟶
and
(
x1
x3
x4
=
x4
)
(
x1
x4
x3
=
x4
)
)
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
and
(
x1
x4
x6
=
x3
)
(
x1
x6
x4
=
x3
)
)
⟶
x5
)
⟶
x5
)
)
⟶
x2
)
⟶
x2
)
Definition
explicit_abelian
explicit_abelian
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
=
x1
x3
x2
Definition
127dd..
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
and
(
explicit_Group
x0
x1
)
(
explicit_abelian
x0
x1
)
Known
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Theorem
e4946..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
28b0a..
x0
x2
=
28b0a..
x0
x1
(proof)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
e219d..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
0941b..
x0
x2
=
0941b..
x0
x1
(proof)
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
prop_ext
prop_ext
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
=
x1
Known
explicit_Group_repindep
explicit_Group_repindep
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
iff
(
explicit_Group
x0
x1
)
(
explicit_Group
x0
x2
)
Theorem
68b43..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
explicit_Group
x0
x2
=
explicit_Group
x0
x1
(proof)
Known
explicit_abelian_repindep
explicit_abelian_repindep
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
iff
(
explicit_abelian
x0
x1
)
(
explicit_abelian
x0
x2
)
Theorem
40a7b..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
127dd..
x0
x2
=
127dd..
x0
x1
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
MetaCat_terminal_p
terminal_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
and
(
x0
x4
)
(
∀ x6 .
x0
x6
⟶
and
(
x1
x6
x4
(
x5
x6
)
)
(
∀ x7 .
x1
x6
x4
x7
⟶
x7
=
x5
x6
)
)
Param
pack_b
pack_b
:
ι
→
CT2
ι
Definition
struct_b
struct_b
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
x1
(
pack_b
x2
x3
)
)
⟶
x1
x0
Param
unpack_b_o
unpack_b_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ι
) →
ο
) →
ο
Param
MagmaHom
Hom_struct_b
:
ι
→
ι
→
ι
→
ο
Param
struct_id
struct_id
:
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
ap
ap
:
ι
→
ι
→
ι
Definition
lam_comp
lam_comp
:=
λ x0 x1 x2 .
lam
x0
(
λ x3 .
ap
x1
(
ap
x2
x3
)
)
Definition
struct_comp
struct_comp
:=
λ x0 x1 x2 .
lam_comp
(
ap
x0
0
)
Known
pack_struct_b_I
pack_struct_b_I
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
struct_b
(
pack_b
x0
x1
)
Known
In_0_1
In_0_1
:
0
∈
1
Known
unpack_b_o_eq
unpack_b_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_b_o
(
pack_b
x1
x2
)
x0
=
x0
x1
x2
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Known
2cd8d..
Hom_struct_b_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 .
MagmaHom
(
pack_b
x0
x2
)
(
pack_b
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
ap
x4
(
x2
x6
x7
)
=
x3
(
ap
x4
x6
)
(
ap
x4
x7
)
)
Known
pack_b_0_eq2
pack_b_0_eq2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
x0
=
ap
(
pack_b
x0
x1
)
0
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Known
Pi_eta
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
lam
x0
(
ap
x2
)
=
x2
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Param
Sing
Sing
:
ι
→
ι
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
eq_1_Sing0
eq_1_Sing0
:
1
=
Sing
0
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Theorem
1e9a4..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→ ο
.
(
∀ x1 .
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
∈
x1
)
⟶
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
1
⟶
∀ x3 .
x3
∈
1
⟶
0
=
x1
x2
x3
)
⟶
x0
1
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
(
∀ x3 : ο .
(
∀ x4 :
ι → ι
.
MetaCat_terminal_p
(
λ x5 .
and
(
struct_b
x5
)
(
unpack_b_o
x5
x0
)
)
MagmaHom
struct_id
struct_comp
x2
x4
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Definition
Semigroup
struct_b_semigroup
:=
λ x0 .
and
(
struct_b
x0
)
(
unpack_b_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ι
.
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
(
x2
x3
x4
)
x5
=
x2
x3
(
x2
x4
x5
)
)
)
Theorem
aa3f3..
MetaCat_struct_b_semigroup_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
Semigroup
MagmaHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
Monoid
struct_b_monoid
:=
λ x0 .
and
(
struct_b
x0
)
(
unpack_b_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ι
.
and
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
(
x2
x3
x4
)
x5
=
x2
x3
(
x2
x4
x5
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
∀ x5 .
x5
∈
x1
⟶
and
(
x2
x5
x4
=
x5
)
(
x2
x4
x5
=
x5
)
)
⟶
x3
)
⟶
x3
)
)
)
Known
cases_1
cases_1
:
∀ x0 .
x0
∈
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
Theorem
e4b9e..
MetaCat_struct_b_monoid_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
Monoid
MagmaHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
1a38b..
:
∀ x0 :
ι →
ι → ι
.
x0
0
0
=
0
⟶
explicit_Group
1
x0
(proof)
Definition
Group
Group
:=
λ x0 .
and
(
struct_b
x0
)
(
unpack_b_o
x0
explicit_Group
)
Theorem
4ce24..
MetaCat_struct_b_group_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
Group
MagmaHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
abelian_Group_alt
struct_b_abelian_group
:=
λ x0 .
and
(
struct_b
x0
)
(
unpack_b_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ι
.
and
(
explicit_Group
x1
x2
)
(
explicit_abelian
x1
x2
)
)
)
Theorem
ad386..
MetaCat_struct_b_abelian_group_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
abelian_Group_alt
MagmaHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
MetaCat_product_constr_p
product_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Known
97db2..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 :
ι →
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 x9 .
x0
x8
⟶
x0
x9
⟶
∀ x10 : ο .
(
x0
(
x4
x8
x9
)
⟶
x1
(
x4
x8
x9
)
x8
(
x5
x8
x9
)
⟶
x1
(
x4
x8
x9
)
x9
(
x6
x8
x9
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 x13 .
x1
x11
x8
x12
⟶
x1
x11
x9
x13
⟶
and
(
and
(
and
(
x1
x11
(
x4
x8
x9
)
(
x7
x8
x9
x11
x12
x13
)
)
(
x3
x11
(
x4
x8
x9
)
x8
(
x5
x8
x9
)
(
x7
x8
x9
x11
x12
x13
)
=
x12
)
)
(
x3
x11
(
x4
x8
x9
)
x9
(
x6
x8
x9
)
(
x7
x8
x9
x11
x12
x13
)
=
x13
)
)
(
∀ x14 .
x1
x11
(
x4
x8
x9
)
x14
⟶
x3
x11
(
x4
x8
x9
)
x8
(
x5
x8
x9
)
x14
=
x12
⟶
x3
x11
(
x4
x8
x9
)
x9
(
x6
x8
x9
)
x14
=
x13
⟶
x14
=
x7
x8
x9
x11
x12
x13
)
)
⟶
x10
)
⟶
x10
)
⟶
MetaCat_product_constr_p
x0
x1
x2
x3
x4
x5
x6
x7
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Known
Pi_ext
Pi_ext
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
∀ x3 .
x3
∈
Pi
x0
x1
⟶
(
∀ x4 .
x4
∈
x0
⟶
ap
x2
x4
=
ap
x3
x4
)
⟶
x2
=
x3
Known
tuple_Sigma_eta
tuple_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
ap
x2
0
)
(
ap
x2
1
)
)
=
x2
Known
tuple_2_setprod
tuple_2_setprod
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
setprod
x0
x1
Param
unpack_b_i
unpack_b_i
:
ι
→
(
ι
→
CT2
ι
) →
ι
Known
unpack_b_i_eq
unpack_b_i_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_b_i
(
pack_b
x1
x2
)
x0
=
x0
x1
x2
Known
pack_b_ext
pack_b_ext
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
pack_b
x0
x1
=
pack_b
x0
x2
Theorem
8633f..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→ ο
.
(
∀ x1 .
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
∈
x1
)
⟶
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
(
∀ x1 .
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
∈
x1
)
⟶
x0
x1
x2
⟶
∀ x3 .
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
x4
x5
x6
∈
x3
)
⟶
x0
x3
x4
⟶
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
x6
∈
setprod
x1
x3
⟶
∀ x7 .
x7
∈
setprod
x1
x3
⟶
lam
2
(
λ x9 .
If_i
(
x9
=
0
)
(
x2
(
ap
x6
0
)
(
ap
x7
0
)
)
(
x4
(
ap
x6
1
)
(
ap
x7
1
)
)
)
=
x5
x6
x7
)
⟶
x0
(
setprod
x1
x3
)
x5
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 : ο .
(
∀ x8 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
(
λ x9 .
and
(
struct_b
x9
)
(
unpack_b_o
x9
x0
)
)
MagmaHom
struct_id
struct_comp
x2
x4
x6
x8
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Theorem
57959..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
28b0a..
x0
x1
⟶
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
28b0a..
x2
x3
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
setprod
x0
x2
⟶
∀ x6 .
x6
∈
setprod
x0
x2
⟶
lam
2
(
λ x8 .
If_i
(
x8
=
0
)
(
x1
(
ap
x5
0
)
(
ap
x6
0
)
)
(
x3
(
ap
x5
1
)
(
ap
x6
1
)
)
)
=
x4
x5
x6
)
⟶
28b0a..
(
setprod
x0
x2
)
x4
(proof)
Theorem
0e909..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
0941b..
x0
x1
⟶
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
0941b..
x2
x3
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
setprod
x0
x2
⟶
∀ x6 .
x6
∈
setprod
x0
x2
⟶
lam
2
(
λ x8 .
If_i
(
x8
=
0
)
(
x1
(
ap
x5
0
)
(
ap
x6
0
)
)
(
x3
(
ap
x5
1
)
(
ap
x6
1
)
)
)
=
x4
x5
x6
)
⟶
0941b..
(
setprod
x0
x2
)
x4
(proof)
Theorem
6bacd..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
explicit_Group
x0
x1
⟶
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
explicit_Group
x2
x3
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
setprod
x0
x2
⟶
∀ x6 .
x6
∈
setprod
x0
x2
⟶
lam
2
(
λ x8 .
If_i
(
x8
=
0
)
(
x1
(
ap
x5
0
)
(
ap
x6
0
)
)
(
x3
(
ap
x5
1
)
(
ap
x6
1
)
)
)
=
x4
x5
x6
)
⟶
explicit_Group
(
setprod
x0
x2
)
x4
(proof)
Theorem
183c5..
MetaCat_struct_b_semigroup_product_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
Semigroup
MagmaHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
64746..
MetaCat_struct_b_monoid_product_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
Monoid
MagmaHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
05bdf..
MetaCat_struct_b_group_product_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
Group
MagmaHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
760b6..
MetaCat_struct_b_abelian_group_product_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
abelian_Group_alt
MagmaHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
MetaCat_equalizer_struct_p
equalizer_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Known
500a0..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι →
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x7 x8 x9 x10 .
x0
x7
⟶
x0
x8
⟶
x1
x7
x8
x9
⟶
x1
x7
x8
x10
⟶
∀ x11 : ο .
(
x0
(
x4
x7
x8
x9
x10
)
⟶
x1
(
x4
x7
x8
x9
x10
)
x7
(
x5
x7
x8
x9
x10
)
⟶
x3
(
x4
x7
x8
x9
x10
)
x7
x8
x9
(
x5
x7
x8
x9
x10
)
=
x3
(
x4
x7
x8
x9
x10
)
x7
x8
x10
(
x5
x7
x8
x9
x10
)
⟶
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x1
x12
x7
x13
⟶
x3
x12
x7
x8
x9
x13
=
x3
x12
x7
x8
x10
x13
⟶
and
(
and
(
x1
x12
(
x4
x7
x8
x9
x10
)
(
x6
x7
x8
x9
x10
x12
x13
)
)
(
x3
x12
(
x4
x7
x8
x9
x10
)
x7
(
x5
x7
x8
x9
x10
)
(
x6
x7
x8
x9
x10
x12
x13
)
=
x13
)
)
(
∀ x14 .
x1
x12
(
x4
x7
x8
x9
x10
)
x14
⟶
x3
x12
(
x4
x7
x8
x9
x10
)
x7
(
x5
x7
x8
x9
x10
)
x14
=
x13
⟶
x14
=
x6
x7
x8
x9
x10
x12
x13
)
)
⟶
x11
)
⟶
x11
)
⟶
MetaCat_equalizer_struct_p
x0
x1
x2
x3
x4
x5
x6
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Theorem
01619..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→ ο
.
(
∀ x1 .
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
∈
x1
)
⟶
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
(
∀ x1 .
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
∈
x1
)
⟶
x0
x1
x2
⟶
∀ x3 .
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
x4
x5
x6
∈
x3
)
⟶
x0
x3
x4
⟶
∀ x5 x6 .
MagmaHom
(
pack_b
x1
x2
)
(
pack_b
x3
x4
)
x5
⟶
MagmaHom
(
pack_b
x1
x2
)
(
pack_b
x3
x4
)
x6
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
x8
∈
{x9 ∈
x1
|
ap
x5
x9
=
ap
x6
x9
}
⟶
∀ x9 .
x9
∈
{x10 ∈
x1
|
ap
x5
x10
=
ap
x6
x10
}
⟶
x2
x8
x9
=
x7
x8
x9
)
⟶
x0
{x8 ∈
x1
|
ap
x5
x8
=
ap
x6
x8
}
x7
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
(
λ x7 .
and
(
struct_b
x7
)
(
unpack_b_o
x7
x0
)
)
MagmaHom
struct_id
struct_comp
x2
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Theorem
1dd10..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
28b0a..
x0
x1
⟶
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
28b0a..
x2
x3
⟶
∀ x4 x5 .
MagmaHom
(
pack_b
x0
x1
)
(
pack_b
x2
x3
)
x4
⟶
MagmaHom
(
pack_b
x0
x1
)
(
pack_b
x2
x3
)
x5
⟶
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
x7
∈
{x8 ∈
x0
|
ap
x4
x8
=
ap
x5
x8
}
⟶
∀ x8 .
x8
∈
{x9 ∈
x0
|
ap
x4
x9
=
ap
x5
x9
}
⟶
x1
x7
x8
=
x6
x7
x8
)
⟶
28b0a..
{x7 ∈
x0
|
ap
x4
x7
=
ap
x5
x7
}
x6
(proof)
Theorem
c31a3..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
explicit_Group
x0
x1
⟶
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
explicit_Group
x2
x3
⟶
∀ x4 x5 .
MagmaHom
(
pack_b
x0
x1
)
(
pack_b
x2
x3
)
x4
⟶
MagmaHom
(
pack_b
x0
x1
)
(
pack_b
x2
x3
)
x5
⟶
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
x7
∈
{x8 ∈
x0
|
ap
x4
x8
=
ap
x5
x8
}
⟶
∀ x8 .
x8
∈
{x9 ∈
x0
|
ap
x4
x9
=
ap
x5
x9
}
⟶
x1
x7
x8
=
x6
x7
x8
)
⟶
explicit_Group
{x7 ∈
x0
|
ap
x4
x7
=
ap
x5
x7
}
x6
(proof)
Theorem
9347c..
MetaCat_struct_b_semigroup_equalizer_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
Semigroup
MagmaHom
struct_id
struct_comp
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
e6d9e..
MetaCat_struct_b_group_equalizer_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
Group
MagmaHom
struct_id
struct_comp
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
994bf..
MetaCat_struct_b_abelian_group_equalizer_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
abelian_Group_alt
MagmaHom
struct_id
struct_comp
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
MetaCat_pullback_struct_p
pullback_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Param
MetaCat
MetaCat
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Known
ed2b0..
product_equalizer_pullback_constr_ex
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
x0
x1
x2
x3
x5
x7
x9
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_struct_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
Known
88d6d..
MetaCat_struct_b_semigroup
:
MetaCat
Semigroup
MagmaHom
struct_id
struct_comp
Theorem
61ba2..
MetaCat_struct_b_semigroup_pullback_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_struct_p
Semigroup
MagmaHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Known
d87b9..
MetaCat_struct_b_group
:
MetaCat
Group
MagmaHom
struct_id
struct_comp
Theorem
42863..
MetaCat_struct_b_group_pullback_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_struct_p
Group
MagmaHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Known
da44b..
MetaCat_struct_b_abelian_group
:
MetaCat
abelian_Group_alt
MagmaHom
struct_id
struct_comp
Theorem
e443a..
MetaCat_struct_b_abelian_group_pullback_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_struct_p
abelian_Group_alt
MagmaHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)