Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr3Mi..
/
8196f..
PUPQ6..
/
8df39..
vout
Pr3Mi..
/
b55e7..
99.97 bars
TMHLd..
/
f84c7..
ownership of
91770..
as prop with payaddr
PrBQv..
rightscost 200.00 controlledby
Pr5Zc..
upto 0
TMFut..
/
cc6ef..
ownership of
14ba4..
as prop with payaddr
PrBQv..
rightscost 200.00 controlledby
Pr5Zc..
upto 0
PrBQv..
/
ffd6d..
200.00 bars
PUQwZ..
/
55562..
doc published by
Pr5Zc..
Param
odd_nat
odd_nat
:
ι
→
ο
Param
equip
equip
:
ι
→
ι
→
ο
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
d3cb5..
:
∀ x0 x1 .
odd_nat
x1
⟶
equip
x0
x1
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x0
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
x2
(
x2
x3
)
=
x3
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
x4
=
x4
)
⟶
x3
)
⟶
x3
Param
nat_p
nat_p
:
ι
→
ο
Known
74e07..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
equip
x0
x1
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
x2
(
x2
x3
)
=
x3
)
⟶
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
and
(
x2
x4
=
x4
)
(
∀ x5 .
x5
∈
x1
⟶
x2
x5
=
x5
⟶
x4
=
x5
)
)
⟶
x3
)
⟶
x3
)
⟶
odd_nat
x0
Param
SNo
SNo
:
ι
→
ο
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Known
7bd74..
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
mul_SNo
(
add_SNo
x0
(
add_SNo
x1
x2
)
)
x3
=
add_SNo
(
mul_SNo
x0
x3
)
(
add_SNo
(
mul_SNo
x1
x3
)
(
mul_SNo
x2
x3
)
)
Param
ordsucc
ordsucc
:
ι
→
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Param
omega
omega
:
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
ap
ap
:
ι
→
ι
→
ι
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_trichotomy_or_impred
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
x0
∈
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
x1
∈
x0
⟶
x2
)
⟶
x2
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
add_SNo_In_omega
add_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_SNo
x0
x1
∈
omega
Known
mul_SNo_In_omega
mul_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_SNo
x0
x1
∈
omega
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_2
nat_2
:
nat_p
2
Param
int
int
:
ι
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Known
aa7e8..
nonneg_int_nat_p
:
∀ x0 .
x0
∈
int
⟶
SNoLe
0
x0
⟶
nat_p
x0
Known
int_add_SNo
int_add_SNo
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
add_SNo
x0
x1
∈
int
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
Subq_omega_int
Subq_omega_int
:
omega
⊆
int
Known
int_minus_SNo
int_minus_SNo
:
∀ x0 .
x0
∈
int
⟶
minus_SNo
x0
∈
int
Known
add_SNo_minus_Le2b
add_SNo_minus_Le2b
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
(
add_SNo
x2
x1
)
x0
⟶
SNoLe
x2
(
add_SNo
x0
(
minus_SNo
x1
)
)
Known
omega_SNo
omega_SNo
:
∀ x0 .
x0
∈
omega
⟶
SNo
x0
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
SNo_0
SNo_0
:
SNo
0
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Known
SNoLtLe
SNoLtLe
:
∀ x0 x1 .
SNoLt
x0
x1
⟶
SNoLe
x0
x1
Known
ordinal_In_SNoLt
ordinal_In_SNoLt
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
SNoLt
x1
x0
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Known
8b4bf..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
(
add_SNo
x0
x1
)
(
add_SNo
x0
x1
)
=
add_SNo
(
mul_SNo
x0
x0
)
(
add_SNo
(
mul_SNo
2
(
mul_SNo
x0
x1
)
)
(
mul_SNo
x1
x1
)
)
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Known
SNo_2
SNo_2
:
SNo
2
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Known
mul_SNo_com_4_inner_mid
mul_SNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
mul_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x2
x3
)
=
mul_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x3
)
Known
ecc46..
:
mul_SNo
2
2
=
4
Known
add_SNo_assoc_4
add_SNo_assoc_4
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
x3
)
)
=
add_SNo
(
add_SNo
x0
(
add_SNo
x1
x2
)
)
x3
Known
48da5..
:
SNo
4
Known
add_SNo_rotate_3_1
add_SNo_rotate_3_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
x2
(
add_SNo
x0
x1
)
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Known
55f68..
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
mul_SNo
x3
(
add_SNo
x0
(
add_SNo
x1
x2
)
)
=
add_SNo
(
mul_SNo
x3
x0
)
(
add_SNo
(
mul_SNo
x3
x1
)
(
mul_SNo
x3
x2
)
)
Known
mul_SNo_minus_distrR
mul_minus_SNo_distrR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
(
minus_SNo
x1
)
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Known
add_SNo_minus_SNo_prop2
add_SNo_minus_SNo_prop2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
(
add_SNo
(
minus_SNo
x0
)
x1
)
=
x1
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
add_SNo_minus_Lt2b3
add_SNo_minus_Lt2b3
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLt
(
add_SNo
x3
x2
)
(
add_SNo
x0
x1
)
⟶
SNoLt
x3
(
add_SNo
x0
(
add_SNo
x1
(
minus_SNo
x2
)
)
)
Known
b5021..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
(
add_SNo
x0
(
minus_SNo
x1
)
)
(
add_SNo
x0
(
minus_SNo
x1
)
)
=
add_SNo
(
mul_SNo
x0
x0
)
(
add_SNo
(
minus_SNo
(
mul_SNo
2
(
mul_SNo
x0
x1
)
)
)
(
mul_SNo
x1
x1
)
)
Known
SNo_add_SNo_3
SNo_add_SNo_3
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
x2
)
)
Known
add_SNo_rotate_5_1
add_SNo_rotate_5_1
:
∀ x0 x1 x2 x3 x4 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
x4
)
)
)
=
add_SNo
x4
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
x3
)
)
)
Known
add_SNo_minus_SNo_linv
add_SNo_minus_SNo_linv
:
∀ x0 .
SNo
x0
⟶
add_SNo
(
minus_SNo
x0
)
x0
=
0
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
add_SNo_minus_L2
add_SNo_minus_L2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
minus_SNo
x0
)
(
add_SNo
x0
x1
)
=
x1
Known
mul_SNo_minus_distrL
mul_SNo_minus_distrL
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
(
minus_SNo
x0
)
x1
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
tuple_3_0_eq
tuple_3_0_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
0
=
x0
Known
tuple_3_1_eq
tuple_3_1_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
1
=
x1
Known
tuple_3_2_eq
tuple_3_2_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
2
=
x2
Known
add_SNo_minus_R2
add_SNo_minus_R2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
add_SNo
x0
x1
)
(
minus_SNo
x1
)
=
x0
Known
add_SNo_assoc
add_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
add_SNo
x0
x1
)
x2
Known
add_SNo_com_4_inner_mid
add_SNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
=
add_SNo
(
add_SNo
x0
x2
)
(
add_SNo
x1
x3
)
Known
d67ed..
:
∀ x0 .
SNo
x0
⟶
mul_SNo
2
x0
=
add_SNo
x0
x0
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Known
add_SNo_minus_SNo_rinv
add_SNo_minus_SNo_rinv
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
(
minus_SNo
x0
)
=
0
Known
add_SNo_minus_R2'
add_SNo_minus_R2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
add_SNo
x0
(
minus_SNo
x1
)
)
x1
=
x0
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
ordinal_SNoLt_In
ordinal_SNoLt_In
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
SNoLt
x0
x1
⟶
x0
∈
x1
Known
add_SNo_Lt2
add_SNo_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
add_SNo_Lt1
add_SNo_Lt1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Known
minus_SNo_Lt_contra1
minus_SNo_Lt_contra1
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
(
minus_SNo
x0
)
x1
⟶
SNoLt
(
minus_SNo
x1
)
x0
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Known
int_mul_SNo
int_mul_SNo
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
mul_SNo
x0
x1
∈
int
Known
nat_p_int
nat_p_int
:
∀ x0 .
nat_p
x0
⟶
x0
∈
int
Theorem
91770..
:
∀ x0 x1 x2 :
ι →
ι →
ι → ι
.
∀ x3 x4 x5 :
ι →
ι →
ι → ο
.
(
∀ x6 x7 x8 .
x3
x6
x7
x8
⟶
x0
x6
x7
x8
=
add_SNo
x6
(
mul_SNo
2
x8
)
)
⟶
(
∀ x6 x7 x8 .
x3
x6
x7
x8
⟶
x1
x6
x7
x8
=
x8
)
⟶
(
∀ x6 x7 x8 .
x3
x6
x7
x8
⟶
x2
x6
x7
x8
=
add_SNo
x7
(
minus_SNo
(
add_SNo
x6
x8
)
)
)
⟶
(
∀ x6 x7 x8 .
x4
x6
x7
x8
⟶
x0
x6
x7
x8
=
add_SNo
(
mul_SNo
2
x7
)
(
minus_SNo
x6
)
)
⟶
(
∀ x6 x7 x8 .
x4
x6
x7
x8
⟶
x1
x6
x7
x8
=
x7
)
⟶
(
∀ x6 x7 x8 .
x4
x6
x7
x8
⟶
x2
x6
x7
x8
=
add_SNo
x6
(
add_SNo
x8
(
minus_SNo
x7
)
)
)
⟶
(
∀ x6 x7 x8 .
x5
x6
x7
x8
⟶
x0
x6
x7
x8
=
add_SNo
x6
(
minus_SNo
(
mul_SNo
2
x7
)
)
)
⟶
(
∀ x6 x7 x8 .
x5
x6
x7
x8
⟶
x1
x6
x7
x8
=
add_SNo
x6
(
add_SNo
x8
(
minus_SNo
x7
)
)
)
⟶
(
∀ x6 x7 x8 .
x5
x6
x7
x8
⟶
x2
x6
x7
x8
=
x7
)
⟶
(
∀ x6 x7 x8 .
add_SNo
x6
x8
∈
x7
⟶
x3
x6
x7
x8
)
⟶
(
∀ x6 x7 x8 .
x3
x6
x7
x8
⟶
add_SNo
x6
x8
∈
x7
)
⟶
(
∀ x6 x7 x8 .
x7
∈
add_SNo
x6
x8
⟶
x6
∈
mul_SNo
2
x7
⟶
x4
x6
x7
x8
)
⟶
(
∀ x6 x7 x8 .
x4
x6
x7
x8
⟶
x7
∈
add_SNo
x6
x8
)
⟶
(
∀ x6 x7 x8 .
x4
x6
x7
x8
⟶
x6
∈
mul_SNo
2
x7
)
⟶
(
∀ x6 x7 x8 .
x7
∈
add_SNo
x6
x8
⟶
mul_SNo
2
x7
∈
x6
⟶
x5
x6
x7
x8
)
⟶
(
∀ x6 x7 x8 .
x5
x6
x7
x8
⟶
x7
∈
add_SNo
x6
x8
)
⟶
(
∀ x6 x7 x8 .
x5
x6
x7
x8
⟶
mul_SNo
2
x7
∈
x6
)
⟶
∀ x6 .
x6
∈
omega
⟶
∀ x7 .
equip
x7
x6
⟶
(
∀ x8 .
x8
∈
x7
⟶
lam
3
(
λ x10 .
If_i
(
x10
=
0
)
(
ap
x8
0
)
(
If_i
(
x10
=
1
)
(
ap
x8
1
)
(
ap
x8
2
)
)
)
=
x8
)
⟶
(
∀ x8 x9 x10 .
lam
3
(
λ x11 .
If_i
(
x11
=
0
)
x8
(
If_i
(
x11
=
1
)
x9
x10
)
)
∈
x7
⟶
∀ x11 : ο .
(
x8
∈
omega
⟶
x9
∈
omega
⟶
x10
∈
omega
⟶
SNoLt
0
x8
⟶
SNoLt
0
x9
⟶
SNoLt
0
x10
⟶
(
add_SNo
x8
x10
=
x9
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
mul_SNo
2
x9
⟶
∀ x12 : ο .
x12
)
⟶
lam
3
(
λ x12 .
If_i
(
x12
=
0
)
x8
(
If_i
(
x12
=
1
)
x10
x9
)
)
∈
x7
⟶
x11
)
⟶
x11
)
⟶
(
∀ x8 x9 x10 x11 .
x11
∈
omega
⟶
∀ x12 .
x12
∈
omega
⟶
∀ x13 .
x13
∈
omega
⟶
lam
3
(
λ x14 .
If_i
(
x14
=
0
)
x8
(
If_i
(
x14
=
1
)
x9
x10
)
)
∈
x7
⟶
add_SNo
(
mul_SNo
x11
x11
)
(
mul_SNo
4
(
mul_SNo
x12
x13
)
)
=
add_SNo
(
mul_SNo
x8
x8
)
(
mul_SNo
4
(
mul_SNo
x9
x10
)
)
⟶
lam
3
(
λ x14 .
If_i
(
x14
=
0
)
x11
(
If_i
(
x14
=
1
)
x12
x13
)
)
∈
x7
)
⟶
∀ x8 x9 x10 .
lam
3
(
λ x11 .
If_i
(
x11
=
0
)
x8
(
If_i
(
x11
=
1
)
x9
x10
)
)
∈
x7
⟶
x0
x8
x9
x10
=
x8
⟶
x1
x8
x9
x10
=
x9
⟶
x2
x8
x9
x10
=
x10
⟶
(
∀ x11 x12 x13 .
lam
3
(
λ x14 .
If_i
(
x14
=
0
)
x11
(
If_i
(
x14
=
1
)
x12
x13
)
)
∈
x7
⟶
x0
x11
x12
x13
=
x11
⟶
x1
x11
x12
x13
=
x12
⟶
x2
x11
x12
x13
=
x13
⟶
and
(
and
(
x11
=
x8
)
(
x12
=
x9
)
)
(
x13
=
x10
)
)
⟶
∀ x11 : ο .
(
∀ x12 .
(
∀ x13 : ο .
(
∀ x14 .
lam
3
(
λ x15 .
If_i
(
x15
=
0
)
x12
(
If_i
(
x15
=
1
)
x14
x14
)
)
∈
x7
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
(proof)