Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrRpo..
/
5d6cc..
PUNkV..
/
a857a..
vout
PrRpo..
/
0e7d1..
0.10 bars
TMKsP..
/
98e16..
ownership of
57bf0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSoM..
/
df351..
ownership of
6ec11..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMV6Z..
/
4ae5d..
ownership of
7f322..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKrD..
/
bf55a..
ownership of
0b706..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWhi..
/
71dd3..
ownership of
fdf04..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMTD..
/
d0f06..
ownership of
b968c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMc8v..
/
ca209..
ownership of
30400..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQQL..
/
7902a..
ownership of
d0dd6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJ9Z..
/
4605a..
ownership of
1797b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSCA..
/
fcc9a..
ownership of
9aaf7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTzs..
/
09b88..
ownership of
f1f58..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMad4..
/
e9b13..
ownership of
82344..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbVa..
/
c7bf6..
ownership of
56a33..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNJf..
/
d1654..
ownership of
71f26..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLiG..
/
4b1ab..
ownership of
54e85..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMK9o..
/
97d63..
ownership of
d78b3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNoF..
/
003f4..
ownership of
28c8a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUt2..
/
28a97..
ownership of
c6676..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM5G..
/
12f59..
ownership of
fcfa0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWsF..
/
79cc5..
ownership of
3bb44..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHmh..
/
272da..
ownership of
f57fc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXou..
/
d637a..
ownership of
12a92..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHe2..
/
fec86..
ownership of
2eac0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJBg..
/
d5d7c..
ownership of
8ea24..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMd5J..
/
51214..
ownership of
72f15..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUx1..
/
67daf..
ownership of
3b542..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMd1V..
/
35985..
ownership of
f55d1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYpV..
/
466d0..
ownership of
20161..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLuV..
/
58c0f..
ownership of
5d805..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSwA..
/
679f2..
ownership of
90cd6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcJn..
/
38187..
ownership of
59e4b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVtF..
/
89b5b..
ownership of
dde9d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcQs..
/
c82d8..
ownership of
f5fd0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFyy..
/
d6017..
ownership of
addab..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJg6..
/
e1057..
ownership of
5f3c8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPWf..
/
421c3..
ownership of
eaabd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUgy2..
/
a9efc..
doc published by
PrCmT..
Known
df_rnghom__df_rngiso__df_ric__df_drng__df_field__df_subrg__df_rgspn__df_abv__df_staf__df_srng__df_lmod__df_scaf__df_lss__df_lsp__df_lmhm__df_lmim__df_lmic__df_lbs
:
∀ x0 : ο .
(
wceq
crh
(
cmpt2
(
λ x1 x2 .
crg
)
(
λ x1 x2 .
crg
)
(
λ x1 x2 .
csb
(
cfv
(
cv
x1
)
cbs
)
(
λ x3 .
csb
(
cfv
(
cv
x2
)
cbs
)
(
λ x4 .
crab
(
λ x5 .
wa
(
wceq
(
cfv
(
cfv
(
cv
x1
)
cur
)
(
cv
x5
)
)
(
cfv
(
cv
x2
)
cur
)
)
(
wral
(
λ x6 .
wral
(
λ x7 .
wa
(
wceq
(
cfv
(
co
(
cv
x6
)
(
cv
x7
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x5
)
)
(
co
(
cfv
(
cv
x6
)
(
cv
x5
)
)
(
cfv
(
cv
x7
)
(
cv
x5
)
)
(
cfv
(
cv
x2
)
cplusg
)
)
)
(
wceq
(
cfv
(
co
(
cv
x6
)
(
cv
x7
)
(
cfv
(
cv
x1
)
cmulr
)
)
(
cv
x5
)
)
(
co
(
cfv
(
cv
x6
)
(
cv
x5
)
)
(
cfv
(
cv
x7
)
(
cv
x5
)
)
(
cfv
(
cv
x2
)
cmulr
)
)
)
)
(
λ x7 .
cv
x3
)
)
(
λ x6 .
cv
x3
)
)
)
(
λ x5 .
co
(
cv
x4
)
(
cv
x3
)
cmap
)
)
)
)
)
⟶
wceq
crs
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
crab
(
λ x3 .
wcel
(
ccnv
(
cv
x3
)
)
(
co
(
cv
x2
)
(
cv
x1
)
crh
)
)
(
λ x3 .
co
(
cv
x1
)
(
cv
x2
)
crh
)
)
)
⟶
wceq
cric
(
cima
(
ccnv
crs
)
(
cdif
cvv
c1o
)
)
⟶
wceq
cdr
(
crab
(
λ x1 .
wceq
(
cfv
(
cv
x1
)
cui
)
(
cdif
(
cfv
(
cv
x1
)
cbs
)
(
csn
(
cfv
(
cv
x1
)
c0g
)
)
)
)
(
λ x1 .
crg
)
)
⟶
wceq
cfield
(
cin
cdr
ccrg
)
⟶
wceq
csubrg
(
cmpt
(
λ x1 .
crg
)
(
λ x1 .
crab
(
λ x2 .
wa
(
wcel
(
co
(
cv
x1
)
(
cv
x2
)
cress
)
crg
)
(
wcel
(
cfv
(
cv
x1
)
cur
)
(
cv
x2
)
)
)
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
)
)
⟶
wceq
crgspn
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
cint
(
crab
(
λ x3 .
wss
(
cv
x2
)
(
cv
x3
)
)
(
λ x3 .
cfv
(
cv
x1
)
csubrg
)
)
)
)
)
⟶
wceq
cabv
(
cmpt
(
λ x1 .
crg
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wa
(
wb
(
wceq
(
cfv
(
cv
x3
)
(
cv
x2
)
)
cc0
)
(
wceq
(
cv
x3
)
(
cfv
(
cv
x1
)
c0g
)
)
)
(
wral
(
λ x4 .
wa
(
wceq
(
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cmulr
)
)
(
cv
x2
)
)
(
co
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
cmul
)
)
(
wbr
(
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x2
)
)
(
co
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
caddc
)
cle
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
co
(
co
cc0
cpnf
cico
)
(
cfv
(
cv
x1
)
cbs
)
cmap
)
)
)
⟶
wceq
cstf
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cstv
)
)
)
)
⟶
wceq
csr
(
cab
(
λ x1 .
wsbc
(
λ x2 .
wa
(
wcel
(
cv
x2
)
(
co
(
cv
x1
)
(
cfv
(
cv
x1
)
coppr
)
crh
)
)
(
wceq
(
cv
x2
)
(
ccnv
(
cv
x2
)
)
)
)
(
cfv
(
cv
x1
)
cstf
)
)
)
⟶
wceq
clmod
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wsbc
(
λ x6 .
wsbc
(
λ x7 .
wsbc
(
λ x8 .
wa
(
wcel
(
cv
x4
)
crg
)
(
wral
(
λ x9 .
wral
(
λ x10 .
wral
(
λ x11 .
wral
(
λ x12 .
wa
(
w3a
(
wcel
(
co
(
cv
x10
)
(
cv
x12
)
(
cv
x5
)
)
(
cv
x2
)
)
(
wceq
(
co
(
cv
x10
)
(
co
(
cv
x12
)
(
cv
x11
)
(
cv
x3
)
)
(
cv
x5
)
)
(
co
(
co
(
cv
x10
)
(
cv
x12
)
(
cv
x5
)
)
(
co
(
cv
x10
)
(
cv
x11
)
(
cv
x5
)
)
(
cv
x3
)
)
)
(
wceq
(
co
(
co
(
cv
x9
)
(
cv
x10
)
(
cv
x7
)
)
(
cv
x12
)
(
cv
x5
)
)
(
co
(
co
(
cv
x9
)
(
cv
x12
)
(
cv
x5
)
)
(
co
(
cv
x10
)
(
cv
x12
)
(
cv
x5
)
)
(
cv
x3
)
)
)
)
(
wa
(
wceq
(
co
(
co
(
cv
x9
)
(
cv
x10
)
(
cv
x8
)
)
(
cv
x12
)
(
cv
x5
)
)
(
co
(
cv
x9
)
(
co
(
cv
x10
)
(
cv
x12
)
(
cv
x5
)
)
(
cv
x5
)
)
)
(
wceq
(
co
(
cfv
(
cv
x4
)
cur
)
(
cv
x12
)
(
cv
x5
)
)
(
cv
x12
)
)
)
)
(
λ x12 .
cv
x2
)
)
(
λ x11 .
cv
x2
)
)
(
λ x10 .
cv
x6
)
)
(
λ x9 .
cv
x6
)
)
)
(
cfv
(
cv
x4
)
cmulr
)
)
(
cfv
(
cv
x4
)
cplusg
)
)
(
cfv
(
cv
x4
)
cbs
)
)
(
cfv
(
cv
x1
)
cvsca
)
)
(
cfv
(
cv
x1
)
csca
)
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 .
cgrp
)
)
⟶
wceq
cscaf
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cfv
(
cfv
(
cv
x1
)
csca
)
cbs
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cvsca
)
)
)
)
⟶
wceq
clss
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wcel
(
co
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cvsca
)
)
(
cv
x5
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cfv
(
cfv
(
cv
x1
)
csca
)
cbs
)
)
(
λ x2 .
cdif
(
cpw
(
cfv
(
cv
x1
)
cbs
)
)
(
csn
c0
)
)
)
)
⟶
wceq
clspn
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
cint
(
crab
(
λ x3 .
wss
(
cv
x2
)
(
cv
x3
)
)
(
λ x3 .
cfv
(
cv
x1
)
clss
)
)
)
)
)
⟶
wceq
clmhm
(
cmpt2
(
λ x1 x2 .
clmod
)
(
λ x1 x2 .
clmod
)
(
λ x1 x2 .
crab
(
λ x3 .
wsbc
(
λ x4 .
wa
(
wceq
(
cfv
(
cv
x2
)
csca
)
(
cv
x4
)
)
(
wral
(
λ x5 .
wral
(
λ x6 .
wceq
(
cfv
(
co
(
cv
x5
)
(
cv
x6
)
(
cfv
(
cv
x1
)
cvsca
)
)
(
cv
x3
)
)
(
co
(
cv
x5
)
(
cfv
(
cv
x6
)
(
cv
x3
)
)
(
cfv
(
cv
x2
)
cvsca
)
)
)
(
λ x6 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x5 .
cfv
(
cv
x4
)
cbs
)
)
)
(
cfv
(
cv
x1
)
csca
)
)
(
λ x3 .
co
(
cv
x1
)
(
cv
x2
)
cghm
)
)
)
⟶
wceq
clmim
(
cmpt2
(
λ x1 x2 .
clmod
)
(
λ x1 x2 .
clmod
)
(
λ x1 x2 .
crab
(
λ x3 .
wf1o
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x2
)
cbs
)
(
cv
x3
)
)
(
λ x3 .
co
(
cv
x1
)
(
cv
x2
)
clmhm
)
)
)
⟶
wceq
clmic
(
cima
(
ccnv
clmim
)
(
cdif
cvv
c1o
)
)
⟶
wceq
clbs
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wa
(
wceq
(
cfv
(
cv
x2
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
wral
(
λ x5 .
wral
(
λ x6 .
wn
(
wcel
(
co
(
cv
x6
)
(
cv
x5
)
(
cfv
(
cv
x1
)
cvsca
)
)
(
cfv
(
cdif
(
cv
x2
)
(
csn
(
cv
x5
)
)
)
(
cv
x3
)
)
)
)
(
λ x6 .
cdif
(
cfv
(
cv
x4
)
cbs
)
(
csn
(
cfv
(
cv
x4
)
c0g
)
)
)
)
(
λ x5 .
cv
x2
)
)
)
(
cfv
(
cv
x1
)
csca
)
)
(
cfv
(
cv
x1
)
clspn
)
)
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_rnghom
:
wceq
crh
(
cmpt2
(
λ x0 x1 .
crg
)
(
λ x0 x1 .
crg
)
(
λ x0 x1 .
csb
(
cfv
(
cv
x0
)
cbs
)
(
λ x2 .
csb
(
cfv
(
cv
x1
)
cbs
)
(
λ x3 .
crab
(
λ x4 .
wa
(
wceq
(
cfv
(
cfv
(
cv
x0
)
cur
)
(
cv
x4
)
)
(
cfv
(
cv
x1
)
cur
)
)
(
wral
(
λ x5 .
wral
(
λ x6 .
wa
(
wceq
(
cfv
(
co
(
cv
x5
)
(
cv
x6
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cv
x4
)
)
(
co
(
cfv
(
cv
x5
)
(
cv
x4
)
)
(
cfv
(
cv
x6
)
(
cv
x4
)
)
(
cfv
(
cv
x1
)
cplusg
)
)
)
(
wceq
(
cfv
(
co
(
cv
x5
)
(
cv
x6
)
(
cfv
(
cv
x0
)
cmulr
)
)
(
cv
x4
)
)
(
co
(
cfv
(
cv
x5
)
(
cv
x4
)
)
(
cfv
(
cv
x6
)
(
cv
x4
)
)
(
cfv
(
cv
x1
)
cmulr
)
)
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
)
(
λ x4 .
co
(
cv
x3
)
(
cv
x2
)
cmap
)
)
)
)
)
(proof)
Theorem
df_rngiso
:
wceq
crs
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
crab
(
λ x2 .
wcel
(
ccnv
(
cv
x2
)
)
(
co
(
cv
x1
)
(
cv
x0
)
crh
)
)
(
λ x2 .
co
(
cv
x0
)
(
cv
x1
)
crh
)
)
)
(proof)
Theorem
df_ric
:
wceq
cric
(
cima
(
ccnv
crs
)
(
cdif
cvv
c1o
)
)
(proof)
Theorem
df_drng
:
wceq
cdr
(
crab
(
λ x0 .
wceq
(
cfv
(
cv
x0
)
cui
)
(
cdif
(
cfv
(
cv
x0
)
cbs
)
(
csn
(
cfv
(
cv
x0
)
c0g
)
)
)
)
(
λ x0 .
crg
)
)
(proof)
Theorem
df_field
:
wceq
cfield
(
cin
cdr
ccrg
)
(proof)
Theorem
df_subrg
:
wceq
csubrg
(
cmpt
(
λ x0 .
crg
)
(
λ x0 .
crab
(
λ x1 .
wa
(
wcel
(
co
(
cv
x0
)
(
cv
x1
)
cress
)
crg
)
(
wcel
(
cfv
(
cv
x0
)
cur
)
(
cv
x1
)
)
)
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
)
)
(proof)
Theorem
df_rgspn
:
wceq
crgspn
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
cint
(
crab
(
λ x2 .
wss
(
cv
x1
)
(
cv
x2
)
)
(
λ x2 .
cfv
(
cv
x0
)
csubrg
)
)
)
)
)
(proof)
Theorem
df_abv
:
wceq
cabv
(
cmpt
(
λ x0 .
crg
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wa
(
wb
(
wceq
(
cfv
(
cv
x2
)
(
cv
x1
)
)
cc0
)
(
wceq
(
cv
x2
)
(
cfv
(
cv
x0
)
c0g
)
)
)
(
wral
(
λ x3 .
wa
(
wceq
(
cfv
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cmulr
)
)
(
cv
x1
)
)
(
co
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
cmul
)
)
(
wbr
(
cfv
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cv
x1
)
)
(
co
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
caddc
)
cle
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
co
(
co
cc0
cpnf
cico
)
(
cfv
(
cv
x0
)
cbs
)
cmap
)
)
)
(proof)
Theorem
df_staf
:
wceq
cstf
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cstv
)
)
)
)
(proof)
Theorem
df_srng
:
wceq
csr
(
cab
(
λ x0 .
wsbc
(
λ x1 .
wa
(
wcel
(
cv
x1
)
(
co
(
cv
x0
)
(
cfv
(
cv
x0
)
coppr
)
crh
)
)
(
wceq
(
cv
x1
)
(
ccnv
(
cv
x1
)
)
)
)
(
cfv
(
cv
x0
)
cstf
)
)
)
(proof)
Theorem
df_lmod
:
wceq
clmod
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wsbc
(
λ x6 .
wsbc
(
λ x7 .
wa
(
wcel
(
cv
x3
)
crg
)
(
wral
(
λ x8 .
wral
(
λ x9 .
wral
(
λ x10 .
wral
(
λ x11 .
wa
(
w3a
(
wcel
(
co
(
cv
x9
)
(
cv
x11
)
(
cv
x4
)
)
(
cv
x1
)
)
(
wceq
(
co
(
cv
x9
)
(
co
(
cv
x11
)
(
cv
x10
)
(
cv
x2
)
)
(
cv
x4
)
)
(
co
(
co
(
cv
x9
)
(
cv
x11
)
(
cv
x4
)
)
(
co
(
cv
x9
)
(
cv
x10
)
(
cv
x4
)
)
(
cv
x2
)
)
)
(
wceq
(
co
(
co
(
cv
x8
)
(
cv
x9
)
(
cv
x6
)
)
(
cv
x11
)
(
cv
x4
)
)
(
co
(
co
(
cv
x8
)
(
cv
x11
)
(
cv
x4
)
)
(
co
(
cv
x9
)
(
cv
x11
)
(
cv
x4
)
)
(
cv
x2
)
)
)
)
(
wa
(
wceq
(
co
(
co
(
cv
x8
)
(
cv
x9
)
(
cv
x7
)
)
(
cv
x11
)
(
cv
x4
)
)
(
co
(
cv
x8
)
(
co
(
cv
x9
)
(
cv
x11
)
(
cv
x4
)
)
(
cv
x4
)
)
)
(
wceq
(
co
(
cfv
(
cv
x3
)
cur
)
(
cv
x11
)
(
cv
x4
)
)
(
cv
x11
)
)
)
)
(
λ x11 .
cv
x1
)
)
(
λ x10 .
cv
x1
)
)
(
λ x9 .
cv
x5
)
)
(
λ x8 .
cv
x5
)
)
)
(
cfv
(
cv
x3
)
cmulr
)
)
(
cfv
(
cv
x3
)
cplusg
)
)
(
cfv
(
cv
x3
)
cbs
)
)
(
cfv
(
cv
x0
)
cvsca
)
)
(
cfv
(
cv
x0
)
csca
)
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 .
cgrp
)
)
(proof)
Theorem
df_scaf
:
wceq
cscaf
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cfv
(
cfv
(
cv
x0
)
csca
)
cbs
)
(
λ x1 x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 x2 .
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cvsca
)
)
)
)
(proof)
Theorem
df_lss
:
wceq
clss
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wcel
(
co
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cvsca
)
)
(
cv
x4
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cfv
(
cfv
(
cv
x0
)
csca
)
cbs
)
)
(
λ x1 .
cdif
(
cpw
(
cfv
(
cv
x0
)
cbs
)
)
(
csn
c0
)
)
)
)
(proof)
Theorem
df_lsp
:
wceq
clspn
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
cint
(
crab
(
λ x2 .
wss
(
cv
x1
)
(
cv
x2
)
)
(
λ x2 .
cfv
(
cv
x0
)
clss
)
)
)
)
)
(proof)
Theorem
df_lmhm
:
wceq
clmhm
(
cmpt2
(
λ x0 x1 .
clmod
)
(
λ x0 x1 .
clmod
)
(
λ x0 x1 .
crab
(
λ x2 .
wsbc
(
λ x3 .
wa
(
wceq
(
cfv
(
cv
x1
)
csca
)
(
cv
x3
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
cfv
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x0
)
cvsca
)
)
(
cv
x2
)
)
(
co
(
cv
x4
)
(
cfv
(
cv
x5
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cvsca
)
)
)
(
λ x5 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x4 .
cfv
(
cv
x3
)
cbs
)
)
)
(
cfv
(
cv
x0
)
csca
)
)
(
λ x2 .
co
(
cv
x0
)
(
cv
x1
)
cghm
)
)
)
(proof)
Theorem
df_lmim
:
wceq
clmim
(
cmpt2
(
λ x0 x1 .
clmod
)
(
λ x0 x1 .
clmod
)
(
λ x0 x1 .
crab
(
λ x2 .
wf1o
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
(
cv
x2
)
)
(
λ x2 .
co
(
cv
x0
)
(
cv
x1
)
clmhm
)
)
)
(proof)
Theorem
df_lmic
:
wceq
clmic
(
cima
(
ccnv
clmim
)
(
cdif
cvv
c1o
)
)
(proof)
Theorem
df_lbs
:
wceq
clbs
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wa
(
wceq
(
cfv
(
cv
x1
)
(
cv
x2
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wn
(
wcel
(
co
(
cv
x5
)
(
cv
x4
)
(
cfv
(
cv
x0
)
cvsca
)
)
(
cfv
(
cdif
(
cv
x1
)
(
csn
(
cv
x4
)
)
)
(
cv
x2
)
)
)
)
(
λ x5 .
cdif
(
cfv
(
cv
x3
)
cbs
)
(
csn
(
cfv
(
cv
x3
)
c0g
)
)
)
)
(
λ x4 .
cv
x1
)
)
)
(
cfv
(
cv
x0
)
csca
)
)
(
cfv
(
cv
x0
)
clspn
)
)
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
)
)
(proof)