Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
d9c14..
PUcQM..
/
aa901..
vout
PrCit..
/
dfcaf..
3.87 bars
TMbJ1..
/
61293..
ownership of
ab81a..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMMCg..
/
e5aed..
ownership of
81b8e..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLuF..
/
cf063..
ownership of
d777e..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMXbr..
/
be162..
ownership of
0db83..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMUtT..
/
519c4..
ownership of
71076..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLmQ..
/
a94ef..
ownership of
1ee58..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLGo..
/
39253..
ownership of
fe2f1..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMaxt..
/
f273a..
ownership of
df4ce..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMKot..
/
1fcd4..
ownership of
38ba8..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMH9Q..
/
0e2b7..
ownership of
6cd4d..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMZNQ..
/
90921..
ownership of
8cad5..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMS3t..
/
a79ed..
ownership of
75df1..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMWnA..
/
91983..
ownership of
52c6f..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMEmT..
/
f7ce1..
ownership of
31a48..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PUcra..
/
7d272..
doc published by
Pr4zB..
Param
nat_p
nat_p
:
ι
→
ο
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
07015..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
nat_p
x2
⟶
equip
x0
(
ordsucc
x2
)
⟶
∀ x3 .
equip
x3
x2
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x0
⟶
x1
x6
x5
⟶
x6
=
x4
x5
)
⟶
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
x4
x5
=
x4
x6
⟶
x5
=
x6
)
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
∀ x7 .
x7
∈
x3
⟶
not
(
x1
x6
x7
)
)
⟶
x5
)
⟶
x5
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
DirGraphOutNeighbors
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
λ x2 .
{x3 ∈
x0
|
and
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
(
x1
x2
x3
)
}
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Known
05419..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
∀ x2 .
nat_p
x2
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
⟶
or
(
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x3
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
x2
)
(
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x3
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
(
ordsucc
x2
)
)
)
⟶
∀ x3 x4 .
x3
∈
x0
⟶
x4
∈
DirGraphOutNeighbors
x0
x1
x3
⟶
(
∀ x5 .
x5
∈
{x6 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x3
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x6
)
(
DirGraphOutNeighbors
x0
x1
x3
)
)
x2
}
⟶
not
(
x1
x4
x5
)
)
⟶
binunion
(
setminus
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x3
)
)
(
setminus
{x6 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x3
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x6
)
(
DirGraphOutNeighbors
x0
x1
x3
)
)
(
ordsucc
x2
)
}
(
setminus
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x3
)
)
)
=
{x6 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x3
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x6
)
(
DirGraphOutNeighbors
x0
x1
x3
)
)
(
ordsucc
x2
)
}
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
8bf56..
:
∀ x0 x1 x2 x3 x4 .
binunion
x0
x1
=
x2
⟶
(
∀ x5 .
x5
∈
x0
⟶
nIn
x5
x1
)
⟶
nat_p
x3
⟶
nat_p
x4
⟶
equip
x0
x3
⟶
equip
x2
(
add_nat
x3
x4
)
⟶
equip
x1
x4
Known
f38da..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
nat_p
x2
⟶
∀ x3 x4 .
x3
∈
x0
⟶
x4
∈
DirGraphOutNeighbors
x0
x1
x3
⟶
(
∀ x5 .
x5
∈
{x6 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x3
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x6
)
(
DirGraphOutNeighbors
x0
x1
x3
)
)
x2
}
⟶
not
(
x1
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
x6
∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
⟶
x5
x6
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x6
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
⟶
∀ x6 .
x6
∈
{x7 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x3
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x7
)
(
DirGraphOutNeighbors
x0
x1
x3
)
)
x2
}
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
setminus
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x3
)
)
(
x1
x6
x8
)
⟶
x7
)
⟶
x7
Known
c82b0..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
∀ x2 x3 .
x2
∈
x0
⟶
x3
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x1
x2
x3
⟶
∀ x4 .
x4
∈
setminus
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x2
)
⟶
not
(
x1
x2
x4
)
Known
94e32..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 x3 .
x2
∈
x0
⟶
∀ x4 .
nat_p
x4
⟶
(
∀ x5 .
x5
∈
x0
⟶
(
x5
=
x2
⟶
∀ x6 : ο .
x6
)
⟶
not
(
x1
x5
x2
)
⟶
or
(
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x5
)
(
DirGraphOutNeighbors
x0
x1
x2
)
)
x4
)
(
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x5
)
(
DirGraphOutNeighbors
x0
x1
x2
)
)
(
ordsucc
x4
)
)
)
⟶
(
∀ x5 .
x5
∈
{x6 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x2
)
(
Sing
x2
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x6
)
(
DirGraphOutNeighbors
x0
x1
x2
)
)
x4
}
⟶
not
(
x1
x3
x5
)
)
⟶
(
∀ x5 .
x5
∈
setminus
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x2
)
⟶
not
(
x1
x2
x5
)
)
⟶
∀ x5 .
x5
∈
setminus
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x2
)
⟶
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x5
)
(
DirGraphOutNeighbors
x0
x1
x2
)
)
(
ordsucc
x4
)
Definition
15fbd..
:=
λ x0 :
ι →
ι → ο
.
λ x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x1
⟶
x0
(
x2
x3
)
(
x2
(
ordsucc
x3
)
)
)
(
x0
(
x2
x1
)
(
x2
0
)
)
Definition
f1360..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 .
∀ x3 : ο .
(
∀ x4 :
ι → ι
.
and
(
bij
(
ordsucc
x1
)
x2
x4
)
(
15fbd..
x0
x1
x4
)
⟶
x3
)
⟶
x3
Definition
u4
:=
ordsucc
u3
Known
1f34f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
∀ x2 .
x2
⊆
x0
⟶
equip
x2
u4
⟶
∀ x3 x4 :
ι → ι
.
(
∀ x5 .
x5
∈
u4
⟶
x3
x5
∈
x2
)
⟶
(
∀ x5 .
x5
∈
u4
⟶
x4
x5
∈
x2
)
⟶
(
∀ x5 .
x5
∈
u4
⟶
x3
x5
=
x4
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x5 .
x5
∈
u4
⟶
x1
(
x3
x5
)
(
x4
x5
)
)
⟶
(
∀ x5 .
x5
∈
u4
⟶
∀ x6 .
x6
∈
u4
⟶
x3
x5
=
x3
x6
⟶
x4
x5
=
x4
x6
⟶
x5
=
x6
)
⟶
(
∀ x5 .
x5
∈
u4
⟶
∀ x6 .
x6
∈
u4
⟶
x3
x5
=
x4
x6
⟶
x4
x5
=
x3
x6
⟶
x5
=
x6
)
⟶
f1360..
x1
u3
x2
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
u16
:=
ordsucc
u15
Definition
u17
:=
ordsucc
u16
Definition
u18
:=
ordsucc
u17
Definition
4b3fa..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 .
prim0
(
λ x3 .
x3
∈
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
Known
998ca..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
⟶
4b3fa..
x0
x1
x2
∈
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
Known
42af1..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
{x3 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x3
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
4b3fa..
x0
x1
x2
∈
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
Known
80db2..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
{x3 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x3
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
∀ x3 .
x3
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
x0
x3
x2
⟶
x3
=
4b3fa..
x0
x1
x2
Known
abdca..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
{x3 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x3
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
∀ x3 .
x3
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
4b3fa..
x0
x1
x2
=
4b3fa..
x0
x1
x3
⟶
x2
=
x3
Definition
f14ce..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 .
prim0
(
λ x3 .
and
(
x3
∈
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
(
x3
=
4b3fa..
x0
x1
x2
⟶
∀ x4 : ο .
x4
)
)
Known
0ddae..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
{x3 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x3
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
⟶
and
(
f14ce..
x0
x1
x2
∈
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
(
f14ce..
x0
x1
x2
=
4b3fa..
x0
x1
x2
⟶
∀ x3 : ο .
x3
)
Param
inv
inv
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Definition
31e20..
:=
λ x0 :
ι →
ι → ο
.
λ x1 .
inv
{x2 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
(
4b3fa..
x0
x1
)
Known
e1908..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
∀ x3 .
x3
∈
setminus
(
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
)
(
DirGraphOutNeighbors
u18
x0
x2
)
⟶
4b3fa..
x0
x1
x3
∈
setminus
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x2
)
Known
9fceb..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
(
∀ x3 .
x3
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
not
(
x0
x2
x3
)
)
⟶
∀ x3 .
x3
∈
setminus
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
(
DirGraphOutNeighbors
u18
x0
x2
)
⟶
31e20..
x0
x1
(
4b3fa..
x0
x1
x3
)
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
Known
23d19..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
∀ x3 .
x3
∈
setminus
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
(
DirGraphOutNeighbors
u18
x0
x2
)
⟶
f14ce..
x0
x1
x3
∈
setminus
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x2
)
Known
eb388..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
(
∀ x3 .
x3
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
not
(
x0
x2
x3
)
)
⟶
∀ x3 .
x3
∈
setminus
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
(
DirGraphOutNeighbors
u18
x0
x2
)
⟶
31e20..
x0
x1
(
f14ce..
x0
x1
x3
)
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
Known
82836..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
(
∀ x3 .
x3
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
not
(
x0
x2
x3
)
)
⟶
∀ x3 .
x3
∈
setminus
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x2
)
⟶
and
(
and
(
31e20..
x0
x1
x3
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
)
(
binintersect
(
DirGraphOutNeighbors
u18
x0
(
31e20..
x0
x1
x3
)
)
(
DirGraphOutNeighbors
u18
x0
x1
)
=
Sing
x3
)
)
(
4b3fa..
x0
x1
(
31e20..
x0
x1
x3
)
=
x3
)
Known
68855..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
(
∀ x3 .
x3
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
not
(
x0
x2
x3
)
)
⟶
∀ x3 .
x3
∈
setminus
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
(
DirGraphOutNeighbors
u18
x0
x2
)
⟶
31e20..
x0
x1
(
4b3fa..
x0
x1
x3
)
=
31e20..
x0
x1
(
f14ce..
x0
x1
x3
)
⟶
∀ x4 : ο .
x4
Known
8a908..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
(
∀ x3 .
x3
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
not
(
x0
x2
x3
)
)
⟶
∀ x3 .
x3
∈
setminus
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
(
DirGraphOutNeighbors
u18
x0
x2
)
⟶
x0
(
31e20..
x0
x1
(
4b3fa..
x0
x1
x3
)
)
(
31e20..
x0
x1
(
f14ce..
x0
x1
x3
)
)
Known
51de2..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
and
(
equip
{x2 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
u4
)
(
equip
{x2 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
u8
)
Known
nat_4
nat_4
:
nat_p
4
Known
b4538..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
equip
(
DirGraphOutNeighbors
u18
x0
x1
)
u5
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Known
Sep_Subq
Sep_Subq
:
∀ x0 .
∀ x1 :
ι → ο
.
Sep
x0
x1
⊆
x0
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
86f86..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
u18
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
x0
x1
x2
)
⟶
or
(
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x1
)
(
DirGraphOutNeighbors
u18
x0
x2
)
)
u1
)
(
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x1
)
(
DirGraphOutNeighbors
u18
x0
x2
)
)
u2
)
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Known
9c223..
equip_ordsucc_remove1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
equip
x0
(
ordsucc
x1
)
⟶
equip
(
setminus
x0
(
Sing
x2
)
)
x1
Known
nat_1
nat_1
:
nat_p
1
Known
b7308..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
∀ x3 .
x3
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
∀ x4 .
x4
∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
⟶
∀ x5 .
x5
∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
⟶
x0
x4
x2
⟶
x0
x5
x2
⟶
x0
x4
x3
⟶
x0
x5
x3
⟶
x4
=
x5
Known
binintersectE2
binintersectE2
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
x2
∈
x1
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Known
binintersectE1
binintersectE1
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
x2
∈
x0
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
36602..
:
add_nat
4
4
=
8
Known
cfabd..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
x2
∈
DirGraphOutNeighbors
x0
x1
x3
Theorem
52c6f..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 : ο .
(
∀ x3 .
x3
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
∀ x4 .
x4
⊆
u18
⟶
∀ x5 .
x5
⊆
u18
⟶
∀ x6 .
x6
⊆
u18
⟶
∀ x7 .
x7
⊆
u18
⟶
x4
=
setminus
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x3
)
⟶
x6
=
setminus
(
DirGraphOutNeighbors
u18
x0
x3
)
(
Sing
x1
)
⟶
x5
=
{x9 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x9
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
x7
=
setminus
{x9 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x9
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
x6
⟶
(
∀ x8 .
x8
∈
u18
⟶
∀ x9 : ο .
(
x8
=
x1
⟶
x9
)
⟶
(
x8
=
x3
⟶
x9
)
⟶
(
x8
∈
x4
⟶
x9
)
⟶
(
x8
∈
x6
⟶
x9
)
⟶
(
x8
∈
x5
⟶
x9
)
⟶
(
x8
∈
x7
⟶
x9
)
⟶
x9
)
⟶
(
∀ x8 .
x8
∈
x5
⟶
not
(
x0
x3
x8
)
)
⟶
equip
x4
u4
⟶
equip
x5
u4
⟶
equip
x6
u4
⟶
equip
x7
u4
⟶
(
∀ x8 .
x8
∈
x6
⟶
nIn
x8
x7
)
⟶
(
∀ x8 .
x8
∈
x5
⟶
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
x6
)
(
x0
x8
x10
)
⟶
x9
)
⟶
x9
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
not
(
x0
x1
x8
)
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x8
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
)
⟶
f1360..
x0
u3
x5
⟶
x2
)
⟶
x2
(proof)
Param
SetAdjoin
SetAdjoin
:
ι
→
ι
→
ι
Param
UPair
UPair
:
ι
→
ι
→
ι
Known
bijE
bijE
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
∀ x3 : ο .
(
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x1
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
x2
x6
=
x4
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Known
In_0_3
In_0_3
:
0
∈
3
Known
In_2_3
In_2_3
:
2
∈
3
Param
omega
omega
:
ι
Definition
finite
finite
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
equip
x0
x2
)
⟶
x1
)
⟶
x1
Known
1b508..
:
∀ x0 x1 .
finite
x0
⟶
atleastp
x1
x0
⟶
x0
⊆
x1
⟶
x0
=
x1
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
2c48a..
atleastp_antisym_equip
:
∀ x0 x1 .
atleastp
x0
x1
⟶
atleastp
x1
x0
⟶
equip
x0
x1
Known
38089..
:
∀ x0 x1 x2 x3 .
atleastp
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
u4
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
8698a..
:
∀ x0 x1 x2 x3 .
∀ x4 :
ι → ο
.
x4
x0
⟶
x4
x1
⟶
x4
x2
⟶
x4
x3
⟶
∀ x5 .
x5
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
⟶
x4
x5
Known
09d70..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
(
x1
=
x2
⟶
∀ x5 : ο .
x5
)
⟶
(
x1
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x1
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
atleastp
u4
x0
Known
69a9c..
:
∀ x0 x1 x2 x3 .
x0
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
e588e..
:
∀ x0 x1 x2 x3 .
x1
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
14338..
:
∀ x0 x1 x2 x3 .
x2
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
b253c..
:
∀ x0 x1 x2 x3 .
x3
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
aa241..
:
∀ x0 x1 x2 .
∀ x3 :
ι → ο
.
x3
x0
⟶
x3
x1
⟶
x3
x2
⟶
∀ x4 .
x4
∈
SetAdjoin
(
UPair
x0
x1
)
x2
⟶
x3
x4
Known
5d098..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
(
x1
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
(
x1
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
atleastp
u3
x0
Known
6be8c..
:
∀ x0 x1 x2 .
x0
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
535ce..
:
∀ x0 x1 x2 .
x1
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
f4e2f..
:
∀ x0 x1 x2 .
x2
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
neq_3_2
neq_3_2
:
u3
=
u2
⟶
∀ x0 : ο .
x0
Known
In_3_4
In_3_4
:
3
∈
4
Known
In_2_4
In_2_4
:
2
∈
4
Known
neq_3_1
neq_3_1
:
u3
=
u1
⟶
∀ x0 : ο .
x0
Known
In_1_4
In_1_4
:
1
∈
4
Known
neq_3_0
neq_3_0
:
u3
=
0
⟶
∀ x0 : ο .
x0
Known
In_0_4
In_0_4
:
0
∈
4
Known
neq_2_1
neq_2_1
:
u2
=
u1
⟶
∀ x0 : ο .
x0
Known
neq_2_0
neq_2_0
:
u2
=
0
⟶
∀ x0 : ο .
x0
Known
neq_1_0
neq_1_0
:
u1
=
0
⟶
∀ x0 : ο .
x0
Known
In_1_3
In_1_3
:
1
∈
3
Theorem
8cad5..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 : ο .
(
∀ x3 .
x3
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
∀ x4 .
x4
⊆
u18
⟶
∀ x5 .
x5
⊆
u18
⟶
∀ x6 .
x6
⊆
u18
⟶
∀ x7 .
x7
⊆
u18
⟶
x4
=
setminus
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x3
)
⟶
x6
=
setminus
(
DirGraphOutNeighbors
u18
x0
x3
)
(
Sing
x1
)
⟶
x5
=
{x9 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x9
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
x7
=
setminus
{x9 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x9
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
x6
⟶
∀ x8 .
x8
∈
x5
⟶
∀ x9 .
x9
∈
x5
⟶
∀ x10 .
x10
∈
x5
⟶
∀ x11 .
x11
∈
x5
⟶
x0
x8
x9
⟶
x0
x9
x10
⟶
x0
x10
x11
⟶
x0
x11
x8
⟶
(
x9
=
x8
⟶
∀ x12 : ο .
x12
)
⟶
(
x10
=
x8
⟶
∀ x12 : ο .
x12
)
⟶
(
x11
=
x8
⟶
∀ x12 : ο .
x12
)
⟶
(
x10
=
x9
⟶
∀ x12 : ο .
x12
)
⟶
(
x11
=
x9
⟶
∀ x12 : ο .
x12
)
⟶
(
x11
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x8
x10
)
⟶
not
(
x0
x9
x11
)
⟶
x5
=
SetAdjoin
(
SetAdjoin
(
UPair
x8
x9
)
x10
)
x11
⟶
(
∀ x12 .
x12
∈
u18
⟶
∀ x13 : ο .
(
x12
=
x1
⟶
x13
)
⟶
(
x12
=
x3
⟶
x13
)
⟶
(
x12
∈
x4
⟶
x13
)
⟶
(
x12
∈
x6
⟶
x13
)
⟶
(
x12
∈
x5
⟶
x13
)
⟶
(
x12
∈
x7
⟶
x13
)
⟶
x13
)
⟶
(
∀ x12 .
x12
∈
x5
⟶
not
(
x0
x3
x12
)
)
⟶
equip
x4
u4
⟶
equip
x5
u4
⟶
equip
x6
u4
⟶
equip
x7
u4
⟶
(
∀ x12 .
x12
∈
x6
⟶
nIn
x12
x7
)
⟶
(
∀ x12 .
x12
∈
x5
⟶
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x6
)
(
x0
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
(
∀ x12 .
x12
∈
x6
⟶
not
(
x0
x1
x12
)
)
⟶
(
∀ x12 .
x12
∈
x6
⟶
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x12
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
)
⟶
x2
)
⟶
x2
(proof)
Theorem
8cad5..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 : ο .
(
∀ x3 .
x3
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
∀ x4 .
x4
⊆
u18
⟶
∀ x5 .
x5
⊆
u18
⟶
∀ x6 .
x6
⊆
u18
⟶
∀ x7 .
x7
⊆
u18
⟶
x4
=
setminus
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x3
)
⟶
x6
=
setminus
(
DirGraphOutNeighbors
u18
x0
x3
)
(
Sing
x1
)
⟶
x5
=
{x9 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x9
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
x7
=
setminus
{x9 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x9
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
x6
⟶
∀ x8 .
x8
∈
x5
⟶
∀ x9 .
x9
∈
x5
⟶
∀ x10 .
x10
∈
x5
⟶
∀ x11 .
x11
∈
x5
⟶
x0
x8
x9
⟶
x0
x9
x10
⟶
x0
x10
x11
⟶
x0
x11
x8
⟶
(
x9
=
x8
⟶
∀ x12 : ο .
x12
)
⟶
(
x10
=
x8
⟶
∀ x12 : ο .
x12
)
⟶
(
x11
=
x8
⟶
∀ x12 : ο .
x12
)
⟶
(
x10
=
x9
⟶
∀ x12 : ο .
x12
)
⟶
(
x11
=
x9
⟶
∀ x12 : ο .
x12
)
⟶
(
x11
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x0
x8
x10
)
⟶
not
(
x0
x9
x11
)
⟶
x5
=
SetAdjoin
(
SetAdjoin
(
UPair
x8
x9
)
x10
)
x11
⟶
(
∀ x12 .
x12
∈
u18
⟶
∀ x13 : ο .
(
x12
=
x1
⟶
x13
)
⟶
(
x12
=
x3
⟶
x13
)
⟶
(
x12
∈
x4
⟶
x13
)
⟶
(
x12
∈
x6
⟶
x13
)
⟶
(
x12
∈
x5
⟶
x13
)
⟶
(
x12
∈
x7
⟶
x13
)
⟶
x13
)
⟶
(
∀ x12 .
x12
∈
x5
⟶
not
(
x0
x3
x12
)
)
⟶
equip
x4
u4
⟶
equip
x5
u4
⟶
equip
x6
u4
⟶
equip
x7
u4
⟶
(
∀ x12 .
x12
∈
x6
⟶
nIn
x12
x7
)
⟶
(
∀ x12 .
x12
∈
x5
⟶
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x6
)
(
x0
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
(
∀ x12 .
x12
∈
x6
⟶
not
(
x0
x1
x12
)
)
⟶
(
∀ x12 .
x12
∈
x6
⟶
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x12
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
)
⟶
x2
)
⟶
x2
(proof)
Known
782e4..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
∀ x2 .
x2
⊆
x0
⟶
∀ x3 x4 x5 x6 .
x2
=
SetAdjoin
(
SetAdjoin
(
UPair
x3
x4
)
x5
)
x6
⟶
(
x4
=
x3
⟶
∀ x7 : ο .
x7
)
⟶
(
x5
=
x3
⟶
∀ x7 : ο .
x7
)
⟶
(
x6
=
x3
⟶
∀ x7 : ο .
x7
)
⟶
(
x5
=
x4
⟶
∀ x7 : ο .
x7
)
⟶
(
x6
=
x4
⟶
∀ x7 : ο .
x7
)
⟶
(
x6
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
x1
x3
x4
⟶
x1
x4
x5
⟶
x1
x5
x6
⟶
x1
x6
x3
⟶
(
∀ x7 .
x7
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x3
)
(
DirGraphOutNeighbors
x0
x1
x5
)
⟶
or
(
x7
=
x4
)
(
x7
=
x6
)
)
⟶
(
∀ x7 .
x7
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x4
)
(
DirGraphOutNeighbors
x0
x1
x6
)
⟶
or
(
x7
=
x3
)
(
x7
=
x5
)
)
⟶
∀ x7 .
x7
∈
x2
⟶
∀ x8 .
x8
∈
x2
⟶
(
x7
=
x8
⟶
∀ x9 : ο .
x9
)
⟶
∀ x9 .
x9
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x7
)
(
DirGraphOutNeighbors
x0
x1
x8
)
⟶
x9
∈
x2
Known
02907..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
equip
(
DirGraphOutNeighbors
x0
x1
x2
)
u5
)
⟶
∀ x2 x3 x4 x5 x6 x7 .
x6
⊆
x0
⟶
x5
⊆
x0
⟶
x6
=
{x9 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x2
)
(
Sing
x2
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x9
)
(
DirGraphOutNeighbors
x0
x1
x2
)
)
u1
}
⟶
x4
=
setminus
(
DirGraphOutNeighbors
x0
x1
x2
)
(
Sing
x3
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
not
(
x1
x3
x8
)
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 : ο .
(
x8
=
x2
⟶
x9
)
⟶
(
x8
=
x3
⟶
x9
)
⟶
(
x8
∈
x4
⟶
x9
)
⟶
(
x8
∈
x5
⟶
x9
)
⟶
(
x8
∈
x6
⟶
x9
)
⟶
(
x8
∈
x7
⟶
x9
)
⟶
x9
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
∀ x9 : ο .
(
∀ x10 .
x10
∈
x6
⟶
∀ x11 .
x11
∈
x6
⟶
(
x10
=
x11
⟶
∀ x12 : ο .
x12
)
⟶
x10
∈
DirGraphOutNeighbors
x0
x1
x8
⟶
x11
∈
DirGraphOutNeighbors
x0
x1
x8
⟶
not
(
x1
x10
x11
)
⟶
(
∀ x12 .
x12
∈
x6
⟶
nIn
x12
(
SetAdjoin
(
UPair
x8
x10
)
x11
)
⟶
not
(
x1
x8
x12
)
)
⟶
x9
)
⟶
x9
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
∀ x9 .
x9
∈
x6
⟶
(
x8
=
x9
⟶
∀ x10 : ο .
x10
)
⟶
∀ x10 .
x10
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x8
)
(
DirGraphOutNeighbors
x0
x1
x9
)
⟶
x10
∈
x6
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
nIn
x8
x5
)
⟶
∀ x8 x9 :
ι → ι
.
(
∀ x10 .
x10
∈
x6
⟶
∀ x11 .
x11
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
x1
x11
x10
⟶
x11
=
x8
x10
)
⟶
(
∀ x10 .
x10
∈
x6
⟶
x9
x10
∈
x5
)
⟶
(
∀ x10 .
x10
∈
x6
⟶
x1
x10
(
x9
x10
)
)
⟶
(
∀ x10 .
x10
∈
x5
⟶
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x6
)
(
x9
x12
=
x10
)
⟶
x11
)
⟶
x11
)
⟶
∀ x10 .
x10
∈
x6
⟶
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x7
)
(
x1
x10
x12
)
⟶
x11
)
⟶
x11
Known
f0ba0..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x1
x2
x3
)
⟶
atleastp
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x2
)
(
DirGraphOutNeighbors
x0
x1
x3
)
)
u2
)
⟶
∀ x2 x3 x4 x5 .
x2
⊆
x0
⟶
x3
⊆
x0
⟶
x4
⊆
x0
⟶
x5
⊆
x0
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x2
)
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x3
)
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x5
)
⟶
(
∀ x6 .
x6
∈
x2
⟶
nIn
x6
x3
)
⟶
(
∀ x6 .
x6
∈
x2
⟶
nIn
x6
x5
)
⟶
(
∀ x6 .
x6
∈
x3
⟶
nIn
x6
x5
)
⟶
∀ x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
x6
∈
x4
⟶
x7
∈
x4
⟶
x3
=
SetAdjoin
(
SetAdjoin
(
UPair
x10
x11
)
x12
)
x13
⟶
x14
∈
x2
⟶
x15
∈
x5
⟶
(
x6
=
x7
⟶
∀ x16 : ο .
x16
)
⟶
x1
x6
x7
⟶
x1
x6
x10
⟶
x1
x6
x15
⟶
x1
x7
x14
⟶
x1
x7
x11
⟶
x1
x12
x15
⟶
not
(
x1
x14
x6
)
⟶
x1
x14
x15
⟶
x1
x13
x15
⟶
∀ x16 .
x16
∈
x3
⟶
not
(
x1
x14
x16
)
Known
edcee..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
x9
⊆
x0
⟶
x11
⊆
x0
⟶
x8
=
setminus
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x5
)
⟶
x10
=
setminus
(
DirGraphOutNeighbors
x0
x1
x5
)
(
Sing
x4
)
⟶
x9
=
{x13 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x13
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
x2
}
⟶
x11
=
setminus
{x13 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x13
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
x3
}
x10
⟶
(
∀ x12 .
x12
∈
x9
⟶
nIn
x12
x8
)
⟶
(
∀ x12 .
x12
∈
x9
⟶
nIn
x12
x11
)
⟶
(
∀ x12 .
x12
∈
x8
⟶
nIn
x12
x11
)
⟶
x6
∈
x9
⟶
x7
∈
x11
⟶
x1
x6
x7
⟶
∀ x12 x13 :
ι → ι
.
x1
x6
(
x12
x6
)
⟶
(
∀ x14 .
x14
∈
x8
⟶
x13
x14
∈
{x15 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x15
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
x2
}
)
⟶
(
∀ x14 .
x14
∈
x8
⟶
x12
(
x13
x14
)
=
x14
)
⟶
atleastp
x3
{x14 ∈
setminus
x9
(
Sing
x6
)
|
x1
(
x12
x14
)
x7
}
Known
9a487..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 x3 .
nat_p
x2
⟶
∀ x4 x5 .
x5
∈
DirGraphOutNeighbors
x0
x1
x4
⟶
∀ x6 x7 x8 .
x6
⊆
x0
⟶
x7
⊆
x0
⟶
x8
⊆
x0
⟶
x7
=
setminus
(
DirGraphOutNeighbors
x0
x1
x5
)
(
Sing
x4
)
⟶
x8
=
setminus
{x10 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x4
)
(
Sing
x4
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x10
)
(
DirGraphOutNeighbors
x0
x1
x4
)
)
x3
}
x7
⟶
equip
x6
x2
⟶
(
∀ x9 .
x9
∈
x6
⟶
x9
=
x5
⟶
∀ x10 : ο .
x10
)
⟶
(
∀ x9 .
x9
∈
x6
⟶
nIn
x9
x7
)
⟶
(
∀ x9 .
x9
∈
x6
⟶
nIn
x9
x8
)
⟶
(
∀ x9 .
x9
∈
x6
⟶
nIn
x9
(
DirGraphOutNeighbors
x0
x1
x4
)
)
⟶
(
∀ x9 .
x9
∈
x6
⟶
nIn
x9
(
DirGraphOutNeighbors
x0
x1
x5
)
)
⟶
(
∀ x9 .
x9
∈
x6
⟶
∀ x10 .
x10
∈
x6
⟶
(
x9
=
x10
⟶
∀ x11 : ο .
x11
)
⟶
∀ x11 .
x11
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x9
)
(
DirGraphOutNeighbors
x0
x1
x10
)
⟶
x11
∈
x6
)
⟶
∀ x9 :
ι → ι
.
(
∀ x10 .
x10
∈
x6
⟶
x9
x10
∈
x7
)
⟶
(
∀ x10 .
x10
∈
x6
⟶
x1
x10
(
x9
x10
)
)
⟶
(
∀ x10 .
x10
∈
x7
⟶
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x6
)
(
x9
x12
=
x10
)
⟶
x11
)
⟶
x11
)
⟶
(
∀ x10 .
x10
∈
x8
⟶
or
(
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x10
)
(
DirGraphOutNeighbors
x0
x1
x5
)
)
u1
)
(
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x10
)
(
DirGraphOutNeighbors
x0
x1
x5
)
)
x3
)
)
⟶
equip
{x10 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x5
)
(
Sing
x5
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x10
)
(
DirGraphOutNeighbors
x0
x1
x5
)
)
u1
}
x2
⟶
x8
⊆
{x10 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x5
)
(
Sing
x5
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x10
)
(
DirGraphOutNeighbors
x0
x1
x5
)
)
x3
}
Known
0bee3..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
∀ x2 x3 x4 .
nat_p
x4
⟶
∀ x5 x6 x7 .
x5
⊆
x0
⟶
x6
⊆
x0
⟶
x7
⊆
x0
⟶
x5
=
setminus
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x2
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
nIn
x8
x5
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
nIn
x8
x7
)
⟶
(
∀ x8 .
x8
∈
x5
⟶
nIn
x8
x7
)
⟶
(
∀ x8 .
x8
∈
x7
⟶
x8
∈
{x9 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x3
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x9
)
(
DirGraphOutNeighbors
x0
x1
x3
)
)
x4
}
)
⟶
∀ x8 x9 .
x8
∈
x6
⟶
x9
∈
x7
⟶
x9
∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x2
)
(
Sing
x2
)
)
⟶
x1
x8
x9
⟶
∀ x10 :
ι → ι
.
(
∀ x11 .
x11
∈
x6
⟶
x10
x11
∈
x5
)
⟶
(
∀ x11 .
x11
∈
x6
⟶
x1
x11
(
x10
x11
)
)
⟶
(
∀ x11 .
x11
∈
x5
⟶
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x6
)
(
x10
x13
=
x11
)
⟶
x12
)
⟶
x12
)
⟶
atleastp
x4
{x11 ∈
setminus
x6
(
Sing
x8
)
|
x1
(
x10
x11
)
x9
}
Known
3eb85..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 .
x2
⊆
x0
⟶
x3
⊆
x0
⟶
x4
⊆
x0
⟶
x5
⊆
x0
⟶
(
∀ x6 .
x6
∈
x2
⟶
nIn
x6
x5
)
⟶
(
∀ x6 .
x6
∈
x2
⟶
nIn
x6
x3
)
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x2
)
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x3
)
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x5
)
⟶
(
∀ x6 .
x6
∈
x3
⟶
nIn
x6
x5
)
⟶
∀ x6 x7 x8 x9 x10 .
x4
=
SetAdjoin
(
SetAdjoin
(
UPair
x6
x7
)
x8
)
x9
⟶
x10
∈
x5
⟶
(
∀ x11 .
x11
∈
x4
⟶
(
x11
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x1
x11
x10
)
⟶
atleastp
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x11
)
(
DirGraphOutNeighbors
x0
x1
x10
)
)
u2
)
⟶
x6
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x7
)
(
DirGraphOutNeighbors
x0
x1
x10
)
⟶
x6
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x9
)
(
DirGraphOutNeighbors
x0
x1
x10
)
⟶
not
(
x1
x7
x10
)
⟶
not
(
x1
x9
x10
)
⟶
∀ x11 x12 :
ι → ι
.
(
∀ x13 .
x13
∈
x4
⟶
x11
x13
∈
x2
)
⟶
(
∀ x13 .
x13
∈
x4
⟶
x11
x13
∈
DirGraphOutNeighbors
x0
x1
x13
)
⟶
(
∀ x13 .
x13
∈
x4
⟶
x12
x13
∈
x3
)
⟶
(
∀ x13 .
x13
∈
x4
⟶
x12
x13
∈
DirGraphOutNeighbors
x0
x1
x13
)
⟶
∀ x13 .
x13
∈
x4
⟶
x13
∈
{x14 ∈
setminus
x4
(
Sing
x6
)
|
x1
(
x11
x14
)
x10
}
⟶
x13
∈
{x14 ∈
setminus
x4
(
Sing
x6
)
|
x1
(
x12
x14
)
x10
}
⟶
x13
=
x8
Theorem
38ba8..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 x3 x4 x5 x6 x7 .
(
∀ x8 .
x8
∈
x4
⟶
∀ x9 : ο .
(
x8
∈
x0
⟶
x8
∈
DirGraphOutNeighbors
x0
x1
x3
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
x1
x3
x8
⟶
(
x8
=
x2
⟶
∀ x10 : ο .
x10
)
⟶
x9
)
⟶
x9
)
⟶
(
∀ x8 : ο .
(
∀ x9 .
and
(
x9
∈
x4
)
(
x1
x5
x9
)
⟶
x8
)
⟶
x8
)
⟶
(
x1
x5
x6
⟶
x1
x7
x6
⟶
∀ x8 .
x8
∈
x4
⟶
not
(
x1
x5
x8
)
)
⟶
x1
x5
x6
⟶
x1
x7
x6
⟶
False
(proof)
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
nat_3
nat_3
:
nat_p
3
Known
256ca..
:
add_nat
2
2
=
4
Param
setsum
setsum
:
ι
→
ι
→
ι
Known
c88e0..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
add_nat
x0
x1
)
(
setsum
x2
x3
)
Known
nat_2
nat_2
:
nat_p
2
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Known
1fe14..
:
∀ x0 x1 x2 x3 .
atleastp
x0
x2
⟶
atleastp
x1
x3
⟶
(
∀ x4 .
x4
∈
x2
⟶
nIn
x4
x3
)
⟶
atleastp
(
setsum
x0
x1
)
(
binunion
x2
x3
)
Known
Subq_atleastp
Subq_atleastp
:
∀ x0 x1 .
x0
⊆
x1
⟶
atleastp
x0
x1
Known
binunion_Subq_min
binunion_Subq_min
:
∀ x0 x1 x2 .
x0
⊆
x2
⟶
x1
⊆
x2
⟶
binunion
x0
x1
⊆
x2
Theorem
fe2f1..
:
∀ x0 .
atleastp
x0
u3
⟶
∀ x1 .
x1
⊆
x0
⟶
∀ x2 .
x2
⊆
x0
⟶
atleastp
u2
x1
⟶
atleastp
u2
x2
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
x4
∈
x2
)
⟶
x3
)
⟶
x3
(proof)
Known
1aece..
:
∀ x0 x1 x2 x3 x4 .
x4
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
⟶
∀ x5 :
ι → ο
.
x5
x0
⟶
x5
x1
⟶
x5
x2
⟶
x5
x3
⟶
x5
x4
Known
UPairI1
UPairI1
:
∀ x0 x1 .
x0
∈
UPair
x0
x1
Known
UPairI2
UPairI2
:
∀ x0 x1 .
x1
∈
UPair
x0
x1
Theorem
71076..
:
∀ x0 x1 x2 x3 .
setminus
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
(
UPair
x0
x2
)
⊆
UPair
x1
x3
(proof)
Definition
TwoRamseyProp_atleastp
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x3
x4
x5
⟶
x3
x5
x4
)
⟶
or
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
atleastp
x0
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
x3
x6
x7
)
)
⟶
x4
)
⟶
x4
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
atleastp
x1
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x3
x6
x7
)
)
)
⟶
x4
)
⟶
x4
)
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Known
7f437..
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
atleastp
x0
(
ordsucc
x1
)
⟶
atleastp
(
setminus
x0
(
Sing
x2
)
)
x1
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
binintersectE
binintersectE
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
and
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
binintersectI
binintersectI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
x1
⟶
x2
∈
binintersect
x0
x1
Known
4f2c3..
:
∀ x0 .
atleastp
(
Sing
x0
)
u1
Known
e8716..
:
∀ x0 .
atleastp
u2
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x1
)
⟶
x1
Known
UPairE
UPairE
:
∀ x0 x1 x2 .
x0
∈
UPair
x1
x2
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
2b310..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
u18
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
x0
x1
x2
)
⟶
atleastp
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x1
)
(
DirGraphOutNeighbors
u18
x0
x2
)
)
u2
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Known
77ee8..
:
∀ x0 x1 x2 .
∀ x3 :
ι → ι
.
nat_p
x0
⟶
equip
x1
x0
⟶
equip
x2
x0
⟶
inj
x1
x2
x3
⟶
bij
x1
x2
x3
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Known
7fc90..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
∀ x4 .
x4
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
nat_0_in_ordsucc
nat_0_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
0
∈
ordsucc
x0
Known
nat_17
nat_17
:
nat_p
17
Theorem
d777e..
:
TwoRamseyProp_atleastp
u3
u6
u18
(proof)
Param
TwoRamseyProp
TwoRamseyProp
:
ι
→
ι
→
ι
→
ο
Known
b8b19..
:
∀ x0 x1 x2 .
TwoRamseyProp_atleastp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x2
Theorem
TwoRamseyProp_3_6_18
TwoRamseyProp_3_6_18
:
TwoRamseyProp
u3
u6
u18
(proof)
Theorem
TwoRamseyProp_3_6_18
TwoRamseyProp_3_6_18
:
TwoRamseyProp
3
6
18
(proof)