Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr9Ji../a4dbc..
PUZqx../2d758..
vout
Pr9Ji../fae71.. 19.95 bars
TMTn6../a0aa7.. ownership of 33222.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMUkW../8e1f0.. ownership of b00d4.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
PUWEf../91f91.. doc published by Pr6Pc..
Param explicit_Fieldexplicit_Field : ιιι(ιιι) → (ιιι) → ο
Param explicit_Field_minusexplicit_Field_minus : ιιι(ιιι) → (ιιι) → ιι
Param ReplSep2ReplSep2 : ι(ιι) → (ιιο) → CT2 ι
Param TrueTrue : ο
Param andand : οοο
Known explicit_Field_Iexplicit_Field_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . (∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6x0)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7)(∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6 = x3 x6 x5)x1x0(∀ x5 . x5x0x3 x1 x5 = x5)(∀ x5 . x5x0∀ x6 : ο . (∀ x7 . and (x7x0) (x3 x5 x7 = x1)x6)x6)(∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6x0)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7)(∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6 = x4 x6 x5)x2x0(x2 = x1∀ x5 : ο . x5)(∀ x5 . x5x0x4 x2 x5 = x5)(∀ x5 . x5x0(x5 = x1∀ x6 : ο . x6)∀ x6 : ο . (∀ x7 . and (x7x0) (x4 x5 x7 = x2)x6)x6)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7))explicit_Field x0 x1 x2 x3 x4
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known explicit_Field_minus_closexplicit_Field_minus_clos : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0explicit_Field_minus x0 x1 x2 x3 x4 x5x0
Known explicit_Field_minus_Rexplicit_Field_minus_R : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0x3 x5 (explicit_Field_minus x0 x1 x2 x3 x4 x5) = x1
Known explicit_Field_zero_multLexplicit_Field_zero_multL : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0x4 x1 x5 = x1
Theorem 33222.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x3 x7 (x3 x8 x9) = x3 (x3 x7 x8) x9)(∀ x7 . x7x0∀ x8 . x8x0x3 x7 x8 = x3 x8 x7)x1x0(∀ x7 . x7x0x3 x1 x7 = x7)(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8x0)(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8 = x4 x8 x7)x2x0(x2 = x1∀ x7 : ο . x7)(∀ x7 . x7x0x4 x2 x7 = x7)explicit_Field_minus x0 x1 x2 x3 x4 x1 = x1(∀ x7 . x7x0∀ x8 . x8x0x6 x7 x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6)(∀ x7 . x7x0∀ x8 . x8x0prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x6 x7 x8 = x6 x10 x12)x11)x11)) = x7)(∀ x7 . x7x0∀ x8 . x8x0prim0 (λ x10 . and (x10x0) (x6 x7 x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x6 x7 x8 = x6 x12 x14)x13)x13))) x10)) = x8)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6prim0 (λ x8 . and (x8x0) (∀ x9 : ο . (∀ x10 . and (x10x0) (x7 = x6 x8 x10)x9)x9))x0)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6prim0 (λ x8 . and (x8x0) (x7 = x6 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11))) x8))x0)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11)) = prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) x10)) = prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))x7 = x8)x6 x1 x1ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6x6 x2 x1ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6x6 (x3 (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10)))) (x3 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9))))ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x6 (x3 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15)))) (x3 (prim0 (λ x14 . and (x14x0) (x7 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) x14))) (prim0 (λ x14 . and (x14x0) (x8 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17))) x14)))) = x6 x10 x12)x11)x11)) = x3 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (x6 (x3 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13)))) (x3 (prim0 (λ x12 . and (x12x0) (x7 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) x12))) (prim0 (λ x12 . and (x12x0) (x8 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15))) x12)))) = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x6 (x3 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17)))) (x3 (prim0 (λ x16 . and (x16x0) (x7 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x18 x20)x19)x19))) x16))) (prim0 (λ x16 . and (x16x0) (x8 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x18 x20)x19)x19))) x16)))) = x6 x12 x14)x13)x13))) x10)) = x3 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6x6 (x3 (x4 (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9)))) (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10)))))ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x6 (x3 (x4 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . and (x14x0) (x7 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) x14))) (prim0 (λ x14 . and (x14x0) (x8 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17))) x14)))))) (x3 (x4 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) (prim0 (λ x14 . and (x14x0) (x8 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17))) x14)))) (x4 (prim0 (λ x14 . and (x14x0) (x7 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) x14))) (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15))))) = x6 x10 x12)x11)x11)) = x3 (x4 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (x6 (x3 (x4 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x12 . and (x12x0) (x7 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) x12))) (prim0 (λ x12 . and (x12x0) (x8 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15))) x12)))))) (x3 (x4 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) (prim0 (λ x12 . and (x12x0) (x8 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15))) x12)))) (x4 (prim0 (λ x12 . and (x12x0) (x7 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) x12))) (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))))) = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . and (x16x0) (x7 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x18 x20)x19)x19))) x16))) (prim0 (λ x16 . and (x16x0) (x8 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x18 x20)x19)x19))) x16)))))) (x3 (x4 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) (prim0 (λ x16 . and (x16x0) (x8 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x18 x20)x19)x19))) x16)))) (x4 (prim0 (λ x16 . and (x16x0) (x7 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x18 x20)x19)x19))) x16))) (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17))))) = x6 x12 x14)x13)x13))) x10)) = x3 (x4 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11)))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12))))) = x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12))))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6(x7 = x6 x1 x1∀ x8 : ο . x8)∀ x8 : ο . (∀ x9 . and (x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) (x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12))))) = x6 x2 x1)x8)x8)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (x3 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (x3 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (x3 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) = x6 x13 x15)x14)x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (x3 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (x3 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (x3 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) = x6 x11 x13)x12)x12))))) = x6 (x3 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12)))) (x3 (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11)))))explicit_Field (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10)))) (x3 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9)))) (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10)))))) (proof)