Search for blocks/addresses/...
Proofgold Address
address
PUUiebkwazTrpGtsGsCFYJGViigRtvhg5ng
total
0
mg
-
conjpub
-
current assets
4934d..
/
38ffe..
bday:
19956
doc published by
Pr4zB..
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
SetAdjoin
SetAdjoin
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Param
UPair
UPair
:
ι
→
ι
→
ι
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
UPairI1
UPairI1
:
∀ x0 x1 .
x0
∈
UPair
x0
x1
Theorem
6be8c..
:
∀ x0 x1 x2 .
x0
∈
SetAdjoin
(
UPair
x0
x1
)
x2
(proof)
Known
UPairI2
UPairI2
:
∀ x0 x1 .
x1
∈
UPair
x0
x1
Theorem
535ce..
:
∀ x0 x1 x2 .
x1
∈
SetAdjoin
(
UPair
x0
x1
)
x2
(proof)
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Theorem
f4e2f..
:
∀ x0 x1 x2 .
x2
∈
SetAdjoin
(
UPair
x0
x1
)
x2
(proof)
Theorem
69a9c..
:
∀ x0 x1 x2 x3 .
x0
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
(proof)
Theorem
e588e..
:
∀ x0 x1 x2 x3 .
x1
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
(proof)
Theorem
14338..
:
∀ x0 x1 x2 x3 .
x2
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
(proof)
Theorem
b253c..
:
∀ x0 x1 x2 x3 .
x3
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
(proof)
Theorem
d8272..
:
∀ x0 x1 x2 x3 x4 .
x0
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
(proof)
Theorem
cc191..
:
∀ x0 x1 x2 x3 x4 .
x1
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
(proof)
Theorem
181b3..
:
∀ x0 x1 x2 x3 x4 .
x2
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
(proof)
Theorem
c9ec0..
:
∀ x0 x1 x2 x3 x4 .
x3
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
(proof)
Theorem
6143a..
:
∀ x0 x1 x2 x3 x4 .
x4
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
(proof)
Theorem
3f3e8..
:
∀ x0 x1 x2 x3 x4 x5 .
x0
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
(proof)
Theorem
8ebd9..
:
∀ x0 x1 x2 x3 x4 x5 .
x1
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
(proof)
Theorem
26088..
:
∀ x0 x1 x2 x3 x4 x5 .
x2
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
(proof)
Theorem
6cbbc..
:
∀ x0 x1 x2 x3 x4 x5 .
x3
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
(proof)
Theorem
2fe98..
:
∀ x0 x1 x2 x3 x4 x5 .
x4
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
(proof)
Theorem
9697f..
:
∀ x0 x1 x2 x3 x4 x5 .
x5
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
(proof)
Theorem
600ec..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
x0
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
(proof)
Theorem
ea770..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
x1
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
(proof)
Theorem
651a3..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
x2
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
(proof)
Theorem
1b5d7..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
x3
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
(proof)
Theorem
44082..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
x4
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
(proof)
Theorem
9475f..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
x5
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
(proof)
Theorem
fe118..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
x6
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
(proof)
Theorem
94e7b..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
x0
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
(proof)
Theorem
df755..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
x1
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
(proof)
Theorem
88aea..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
x2
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
(proof)
Theorem
2d848..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
x3
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
(proof)
Theorem
43958..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
x4
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
(proof)
Theorem
e3b9a..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
x5
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
(proof)
Theorem
696b5..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
x6
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
(proof)
Theorem
7fdc4..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
x7
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
(proof)
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Param
setsum
setsum
:
ι
→
ι
→
ι
Param
setminus
setminus
:
ι
→
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
385ef..
:
∀ x0 x1 x2 x3 .
atleastp
x0
x2
⟶
atleastp
x1
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
nIn
x4
x1
)
⟶
atleastp
(
binunion
x0
x1
)
(
setsum
x2
x3
)
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
Subq_atleastp
Subq_atleastp
:
∀ x0 x1 .
x0
⊆
x1
⟶
atleastp
x0
x1
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Theorem
c558f..
:
∀ x0 x1 x2 x3 .
atleastp
x0
x2
⟶
atleastp
x1
x3
⟶
atleastp
(
binunion
x0
x1
)
(
setsum
x2
x3
)
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Known
cbaf1..
:
∀ x0 x1 .
UPair
x0
x1
=
binunion
(
Sing
x0
)
(
Sing
x1
)
Known
setsum_1_1_2
setsum_1_1_2
:
setsum
1
1
=
2
Known
4f2c3..
:
∀ x0 .
atleastp
(
Sing
x0
)
u1
Theorem
b3e89..
:
∀ x0 x1 .
atleastp
(
UPair
x0
x1
)
u2
(proof)
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Param
nat_p
nat_p
:
ι
→
ο
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_0
nat_0
:
nat_p
0
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Theorem
f4190..
:
∀ x0 .
add_nat
x0
u1
=
ordsucc
x0
(proof)
Definition
u3
:=
ordsucc
u2
Param
equip
equip
:
ι
→
ι
→
ο
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
c88e0..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
add_nat
x0
x1
)
(
setsum
x2
x3
)
Known
nat_2
nat_2
:
nat_p
2
Known
nat_1
nat_1
:
nat_p
1
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Theorem
51eee..
:
∀ x0 x1 x2 .
atleastp
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
u3
(proof)
Definition
u4
:=
ordsucc
u3
Known
nat_3
nat_3
:
nat_p
3
Theorem
38089..
:
∀ x0 x1 x2 x3 .
atleastp
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
u4
(proof)
Definition
u5
:=
ordsucc
u4
Known
nat_4
nat_4
:
nat_p
4
Theorem
3e701..
:
∀ x0 x1 x2 x3 x4 .
atleastp
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
u5
(proof)
Definition
u6
:=
ordsucc
u5
Known
nat_5
nat_5
:
nat_p
5
Theorem
b0421..
:
∀ x0 x1 x2 x3 x4 x5 .
atleastp
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
u6
(proof)
Definition
u7
:=
ordsucc
u6
Known
nat_6
nat_6
:
nat_p
6
Theorem
0156c..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
atleastp
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
u7
(proof)
Definition
u8
:=
ordsucc
u7
Known
nat_7
nat_7
:
nat_p
7
Theorem
657ad..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
atleastp
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
)
u8
(proof)
Param
and
and
:
ο
→
ο
→
ο
Definition
TwoRamseyProp
TwoRamseyProp
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x3
x4
x5
⟶
x3
x5
x4
)
⟶
or
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
equip
x0
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
x3
x6
x7
)
)
⟶
x4
)
⟶
x4
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
equip
x1
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x3
x6
x7
)
)
)
⟶
x4
)
⟶
x4
)
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Definition
u9
:=
ordsucc
u8
Known
bd9af..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
or
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 : ο .
(
∀ x3 .
x3
∈
u9
⟶
∀ x4 .
x4
∈
u9
⟶
∀ x5 .
x5
∈
u9
⟶
∀ x6 .
x6
∈
u9
⟶
(
x1
=
x3
⟶
∀ x7 : ο .
x7
)
⟶
(
x1
=
x4
⟶
∀ x7 : ο .
x7
)
⟶
(
x1
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x1
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x4
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
(
x5
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
x0
x1
x3
⟶
x0
x1
x4
⟶
x0
x1
x5
⟶
not
(
x0
x3
x4
)
⟶
not
(
x0
x3
x5
)
⟶
not
(
x0
x4
x5
)
⟶
(
∀ x7 .
x7
∈
u9
⟶
x0
x1
x7
⟶
x7
∈
SetAdjoin
(
SetAdjoin
(
UPair
x1
x3
)
x4
)
x5
)
⟶
x0
x6
x3
⟶
x0
x6
x4
⟶
x2
)
⟶
x2
Known
8455a..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
or
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 .
x2
∈
u9
⟶
∀ x3 .
x3
∈
u9
⟶
(
x1
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
(
x1
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x1
x2
⟶
x0
x1
x3
⟶
∀ x4 : ο .
(
∀ x5 .
x5
∈
u9
⟶
(
x1
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
x0
x1
x5
⟶
not
(
x0
x2
x5
)
⟶
not
(
x0
x3
x5
)
⟶
(
∀ x6 .
x6
∈
u9
⟶
x0
x1
x6
⟶
x6
∈
SetAdjoin
(
SetAdjoin
(
UPair
x1
x2
)
x3
)
x5
)
⟶
x4
)
⟶
x4
Known
1aece..
:
∀ x0 x1 x2 x3 x4 .
x4
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
⟶
∀ x5 :
ι → ο
.
x5
x0
⟶
x5
x1
⟶
x5
x2
⟶
x5
x3
⟶
x5
x4
Known
c62d8..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
or
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 .
x2
∈
u9
⟶
∀ x3 .
x3
∈
u9
⟶
∀ x4 .
x4
∈
u9
⟶
(
x1
=
x2
⟶
∀ x5 : ο .
x5
)
⟶
(
x1
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x1
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x1
x2
⟶
x0
x1
x3
⟶
x0
x1
x4
⟶
∀ x5 .
x5
∈
u9
⟶
x0
x1
x5
⟶
x5
∈
SetAdjoin
(
SetAdjoin
(
UPair
x1
x2
)
x3
)
x4
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
0799b..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
or
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u3
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x0
x3
x4
)
)
⟶
x1
)
⟶
x1
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 .
x2
∈
u9
⟶
∀ x3 .
x3
∈
u9
⟶
∀ x4 .
x4
∈
u9
⟶
∀ x5 .
x5
∈
u9
⟶
(
x1
=
x2
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x4
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
x0
x1
x2
⟶
x0
x1
x3
⟶
x0
x1
x4
⟶
not
(
x0
x2
x3
)
⟶
not
(
x0
x2
x4
)
⟶
not
(
x0
x3
x4
)
⟶
x0
x5
x2
⟶
x0
x5
x3
⟶
x0
x5
x4
⟶
False
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
nat_8
nat_8
:
nat_p
8
Known
a515c..
:
∀ x0 x1 x2 .
(
x0
=
x1
⟶
∀ x3 : ο .
x3
)
⟶
(
x0
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
equip
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
u3
Known
In_0_9
In_0_9
:
0
∈
9
Known
0728d..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
not
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
⊆
u9
)
(
and
(
equip
u4
x2
)
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x0
x3
x4
)
)
)
⟶
x1
)
⟶
x1
)
⟶
∀ x1 .
x1
∈
u9
⟶
∀ x2 .
x2
∈
u9
⟶
∀ x3 .
x3
∈
u9
⟶
∀ x4 .
x4
∈
u9
⟶
not
(
x0
x1
x2
)
⟶
not
(
x0
x1
x3
)
⟶
not
(
x0
x1
x4
)
⟶
not
(
x0
x2
x3
)
⟶
not
(
x0
x2
x4
)
⟶
not
(
x0
x3
x4
)
⟶
∀ x5 : ο .
(
x1
=
x2
⟶
x5
)
⟶
(
x1
=
x3
⟶
x5
)
⟶
(
x1
=
x4
⟶
x5
)
⟶
(
x2
=
x3
⟶
x5
)
⟶
(
x2
=
x4
⟶
x5
)
⟶
(
x3
=
x4
⟶
x5
)
⟶
x5
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
TwoRamseyProp_3_4_9
TwoRamseyProp_3_4_9
:
TwoRamseyProp
3
4
9
(proof)
previous assets