Search for blocks/addresses/...

Proofgold Address

address
PUUiebkwazTrpGtsGsCFYJGViigRtvhg5ng
total
0
mg
-
conjpub
-
current assets
4934d../38ffe.. bday: 19956 doc published by Pr4zB..
Param binunionbinunion : ιιι
Param SingSing : ιι
Definition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)
Param UPairUPair : ιιι
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known UPairI1UPairI1 : ∀ x0 x1 . x0UPair x0 x1
Theorem 6be8c.. : ∀ x0 x1 x2 . x0SetAdjoin (UPair x0 x1) x2 (proof)
Known UPairI2UPairI2 : ∀ x0 x1 . x1UPair x0 x1
Theorem 535ce.. : ∀ x0 x1 x2 . x1SetAdjoin (UPair x0 x1) x2 (proof)
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known SingISingI : ∀ x0 . x0Sing x0
Theorem f4e2f.. : ∀ x0 x1 x2 . x2SetAdjoin (UPair x0 x1) x2 (proof)
Theorem 69a9c.. : ∀ x0 x1 x2 x3 . x0SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3 (proof)
Theorem e588e.. : ∀ x0 x1 x2 x3 . x1SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3 (proof)
Theorem 14338.. : ∀ x0 x1 x2 x3 . x2SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3 (proof)
Theorem b253c.. : ∀ x0 x1 x2 x3 . x3SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3 (proof)
Theorem d8272.. : ∀ x0 x1 x2 x3 x4 . x0SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4 (proof)
Theorem cc191.. : ∀ x0 x1 x2 x3 x4 . x1SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4 (proof)
Theorem 181b3.. : ∀ x0 x1 x2 x3 x4 . x2SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4 (proof)
Theorem c9ec0.. : ∀ x0 x1 x2 x3 x4 . x3SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4 (proof)
Theorem 6143a.. : ∀ x0 x1 x2 x3 x4 . x4SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4 (proof)
Theorem 3f3e8.. : ∀ x0 x1 x2 x3 x4 x5 . x0SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5 (proof)
Theorem 8ebd9.. : ∀ x0 x1 x2 x3 x4 x5 . x1SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5 (proof)
Theorem 26088.. : ∀ x0 x1 x2 x3 x4 x5 . x2SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5 (proof)
Theorem 6cbbc.. : ∀ x0 x1 x2 x3 x4 x5 . x3SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5 (proof)
Theorem 2fe98.. : ∀ x0 x1 x2 x3 x4 x5 . x4SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5 (proof)
Theorem 9697f.. : ∀ x0 x1 x2 x3 x4 x5 . x5SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5 (proof)
Theorem 600ec.. : ∀ x0 x1 x2 x3 x4 x5 x6 . x0SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6 (proof)
Theorem ea770.. : ∀ x0 x1 x2 x3 x4 x5 x6 . x1SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6 (proof)
Theorem 651a3.. : ∀ x0 x1 x2 x3 x4 x5 x6 . x2SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6 (proof)
Theorem 1b5d7.. : ∀ x0 x1 x2 x3 x4 x5 x6 . x3SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6 (proof)
Theorem 44082.. : ∀ x0 x1 x2 x3 x4 x5 x6 . x4SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6 (proof)
Theorem 9475f.. : ∀ x0 x1 x2 x3 x4 x5 x6 . x5SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6 (proof)
Theorem fe118.. : ∀ x0 x1 x2 x3 x4 x5 x6 . x6SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6 (proof)
Theorem 94e7b.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . x0SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7 (proof)
Theorem df755.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . x1SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7 (proof)
Theorem 88aea.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . x2SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7 (proof)
Theorem 2d848.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . x3SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7 (proof)
Theorem 43958.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . x4SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7 (proof)
Theorem e3b9a.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . x5SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7 (proof)
Theorem 696b5.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . x6SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7 (proof)
Theorem 7fdc4.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . x7SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7 (proof)
Param atleastpatleastp : ιιο
Param setsumsetsum : ιιι
Param setminussetminus : ιιι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known 385ef.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3(∀ x4 . x4x0nIn x4 x1)atleastp (binunion x0 x1) (setsum x2 x3)
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known Subq_atleastpSubq_atleastp : ∀ x0 x1 . x0x1atleastp x0 x1
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known FalseEFalseE : False∀ x0 : ο . x0
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2setminus x0 x1x2x0
Theorem c558f.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3atleastp (binunion x0 x1) (setsum x2 x3) (proof)
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Known cbaf1.. : ∀ x0 x1 . UPair x0 x1 = binunion (Sing x0) (Sing x1)
Known setsum_1_1_2setsum_1_1_2 : setsum 1 1 = 2
Known 4f2c3.. : ∀ x0 . atleastp (Sing x0) u1
Theorem b3e89.. : ∀ x0 x1 . atleastp (UPair x0 x1) u2 (proof)
Param add_natadd_nat : ιιι
Param nat_pnat_p : ιο
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Known nat_0nat_0 : nat_p 0
Known add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0
Theorem f4190.. : ∀ x0 . add_nat x0 u1 = ordsucc x0 (proof)
Definition u3 := ordsucc u2
Param equipequip : ιιο
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known c88e0.. : ∀ x0 x1 x2 x3 . nat_p x0nat_p x1equip x0 x2equip x1 x3equip (add_nat x0 x1) (setsum x2 x3)
Known nat_2nat_2 : nat_p 2
Known nat_1nat_1 : nat_p 1
Known equip_refequip_ref : ∀ x0 . equip x0 x0
Theorem 51eee.. : ∀ x0 x1 x2 . atleastp (SetAdjoin (UPair x0 x1) x2) u3 (proof)
Definition u4 := ordsucc u3
Known nat_3nat_3 : nat_p 3
Theorem 38089.. : ∀ x0 x1 x2 x3 . atleastp (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) u4 (proof)
Definition u5 := ordsucc u4
Known nat_4nat_4 : nat_p 4
Theorem 3e701.. : ∀ x0 x1 x2 x3 x4 . atleastp (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) u5 (proof)
Definition u6 := ordsucc u5
Known nat_5nat_5 : nat_p 5
Theorem b0421.. : ∀ x0 x1 x2 x3 x4 x5 . atleastp (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) u6 (proof)
Definition u7 := ordsucc u6
Known nat_6nat_6 : nat_p 6
Theorem 0156c.. : ∀ x0 x1 x2 x3 x4 x5 x6 . atleastp (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) u7 (proof)
Definition u8 := ordsucc u7
Known nat_7nat_7 : nat_p 7
Theorem 657ad.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . atleastp (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4) x5) x6) x7) u8 (proof)
Param andand : οοο
Definition TwoRamseyPropTwoRamseyProp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5x3 x5 x4)or (∀ x4 : ο . (∀ x5 . and (x5x2) (and (equip x0 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)x3 x6 x7))x4)x4) (∀ x4 : ο . (∀ x5 . and (x5x2) (and (equip x1 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)not (x3 x6 x7)))x4)x4)
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Definition u9 := ordsucc u8
Known bd9af.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 : ο . (∀ x3 . x3u9∀ x4 . x4u9∀ x5 . x5u9∀ x6 . x6u9(x1 = x3∀ x7 : ο . x7)(x1 = x4∀ x7 : ο . x7)(x1 = x5∀ x7 : ο . x7)(x1 = x6∀ x7 : ο . x7)(x3 = x4∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x3 = x6∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)(x4 = x6∀ x7 : ο . x7)(x5 = x6∀ x7 : ο . x7)x0 x1 x3x0 x1 x4x0 x1 x5not (x0 x3 x4)not (x0 x3 x5)not (x0 x4 x5)(∀ x7 . x7u9x0 x1 x7x7SetAdjoin (SetAdjoin (UPair x1 x3) x4) x5)x0 x6 x3x0 x6 x4x2)x2
Known 8455a.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 . x2u9∀ x3 . x3u9(x1 = x2∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)x0 x1 x2x0 x1 x3∀ x4 : ο . (∀ x5 . x5u9(x1 = x5∀ x6 : ο . x6)(x2 = x5∀ x6 : ο . x6)(x3 = x5∀ x6 : ο . x6)x0 x1 x5not (x0 x2 x5)not (x0 x3 x5)(∀ x6 . x6u9x0 x1 x6x6SetAdjoin (SetAdjoin (UPair x1 x2) x3) x5)x4)x4
Known 1aece.. : ∀ x0 x1 x2 x3 x4 . x4SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3∀ x5 : ι → ο . x5 x0x5 x1x5 x2x5 x3x5 x4
Known c62d8.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 . x2u9∀ x3 . x3u9∀ x4 . x4u9(x1 = x2∀ x5 : ο . x5)(x1 = x3∀ x5 : ο . x5)(x1 = x4∀ x5 : ο . x5)(x2 = x3∀ x5 : ο . x5)(x2 = x4∀ x5 : ο . x5)(x3 = x4∀ x5 : ο . x5)x0 x1 x2x0 x1 x3x0 x1 x4∀ x5 . x5u9x0 x1 x5x5SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Known 0799b.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (or (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u3 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x0 x3 x4))x1)x1) (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1))∀ x1 . x1u9∀ x2 . x2u9∀ x3 . x3u9∀ x4 . x4u9∀ x5 . x5u9(x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x1 = x5∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x2 = x5∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)(x3 = x5∀ x6 : ο . x6)(x4 = x5∀ x6 : ο . x6)x0 x1 x2x0 x1 x3x0 x1 x4not (x0 x2 x3)not (x0 x2 x4)not (x0 x3 x4)x0 x5 x2x0 x5 x3x0 x5 x4False
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known nat_8nat_8 : nat_p 8
Known a515c.. : ∀ x0 x1 x2 . (x0 = x1∀ x3 : ο . x3)(x0 = x2∀ x3 : ο . x3)(x1 = x2∀ x3 : ο . x3)equip (SetAdjoin (UPair x0 x1) x2) u3
Known In_0_9In_0_9 : 09
Known 0728d.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)not (∀ x1 : ο . (∀ x2 . and (x2u9) (and (equip u4 x2) (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x0 x3 x4)))x1)x1)∀ x1 . x1u9∀ x2 . x2u9∀ x3 . x3u9∀ x4 . x4u9not (x0 x1 x2)not (x0 x1 x3)not (x0 x1 x4)not (x0 x2 x3)not (x0 x2 x4)not (x0 x3 x4)∀ x5 : ο . (x1 = x2x5)(x1 = x3x5)(x1 = x4x5)(x2 = x3x5)(x2 = x4x5)(x3 = x4x5)x5
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Theorem TwoRamseyProp_3_4_9TwoRamseyProp_3_4_9 : TwoRamseyProp 3 4 9 (proof)

previous assets